Properties

Label 2-570-15.8-c1-0-19
Degree $2$
Conductor $570$
Sign $0.304 + 0.952i$
Analytic cond. $4.55147$
Root an. cond. $2.13341$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 − 0.707i)2-s + (−1.35 + 1.07i)3-s + 1.00i·4-s + (1.25 − 1.85i)5-s + (1.72 + 0.194i)6-s + (−3.56 + 3.56i)7-s + (0.707 − 0.707i)8-s + (0.668 − 2.92i)9-s + (−2.19 + 0.421i)10-s − 3.35i·11-s + (−1.07 − 1.35i)12-s + (0.759 + 0.759i)13-s + 5.03·14-s + (0.298 + 3.86i)15-s − 1.00·16-s + (0.534 + 0.534i)17-s + ⋯
L(s)  = 1  + (−0.499 − 0.499i)2-s + (−0.781 + 0.623i)3-s + 0.500i·4-s + (0.561 − 0.827i)5-s + (0.702 + 0.0793i)6-s + (−1.34 + 1.34i)7-s + (0.250 − 0.250i)8-s + (0.222 − 0.974i)9-s + (−0.694 + 0.133i)10-s − 1.01i·11-s + (−0.311 − 0.390i)12-s + (0.210 + 0.210i)13-s + 1.34·14-s + (0.0771 + 0.997i)15-s − 0.250·16-s + (0.129 + 0.129i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.304 + 0.952i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.304 + 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(570\)    =    \(2 \cdot 3 \cdot 5 \cdot 19\)
Sign: $0.304 + 0.952i$
Analytic conductor: \(4.55147\)
Root analytic conductor: \(2.13341\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{570} (533, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 570,\ (\ :1/2),\ 0.304 + 0.952i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.555917 - 0.406058i\)
\(L(\frac12)\) \(\approx\) \(0.555917 - 0.406058i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.707 + 0.707i)T \)
3 \( 1 + (1.35 - 1.07i)T \)
5 \( 1 + (-1.25 + 1.85i)T \)
19 \( 1 + iT \)
good7 \( 1 + (3.56 - 3.56i)T - 7iT^{2} \)
11 \( 1 + 3.35iT - 11T^{2} \)
13 \( 1 + (-0.759 - 0.759i)T + 13iT^{2} \)
17 \( 1 + (-0.534 - 0.534i)T + 17iT^{2} \)
23 \( 1 + (-3.95 + 3.95i)T - 23iT^{2} \)
29 \( 1 + 3.01T + 29T^{2} \)
31 \( 1 - 8.18T + 31T^{2} \)
37 \( 1 + (-5.57 + 5.57i)T - 37iT^{2} \)
41 \( 1 + 8.43iT - 41T^{2} \)
43 \( 1 + (-4.29 - 4.29i)T + 43iT^{2} \)
47 \( 1 + (8.00 + 8.00i)T + 47iT^{2} \)
53 \( 1 + (-7.04 + 7.04i)T - 53iT^{2} \)
59 \( 1 + 4.32T + 59T^{2} \)
61 \( 1 - 1.35T + 61T^{2} \)
67 \( 1 + (-5.23 + 5.23i)T - 67iT^{2} \)
71 \( 1 - 4.74iT - 71T^{2} \)
73 \( 1 + (5.12 + 5.12i)T + 73iT^{2} \)
79 \( 1 + 0.256iT - 79T^{2} \)
83 \( 1 + (4.73 - 4.73i)T - 83iT^{2} \)
89 \( 1 - 15.2T + 89T^{2} \)
97 \( 1 + (9.73 - 9.73i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.43722378680200132800272976478, −9.615040972317695353504966258365, −9.051755801483630821852082851597, −8.470688605381039959705648590850, −6.59011513114950582767632373732, −5.95008613303081190346055999433, −5.09964592222487442890362313547, −3.71145201177815288994613079223, −2.54767760578133885948197386434, −0.58496052096013581795242555685, 1.21571805911568411936068021391, 2.93903193352183222355418823864, 4.49598610519181413939487946264, 5.87800487912117647048127687442, 6.56684700223375882036554544886, 7.16471654292689392276478817966, 7.78958595567215396253456945996, 9.554352336170835421780583374012, 10.00053458076162407294203808252, 10.67849878147317983335677037867

Graph of the $Z$-function along the critical line