Properties

Label 2-570-15.8-c1-0-17
Degree $2$
Conductor $570$
Sign $0.980 - 0.198i$
Analytic cond. $4.55147$
Root an. cond. $2.13341$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 − 0.707i)2-s + (1.65 − 0.518i)3-s + 1.00i·4-s + (2.11 + 0.736i)5-s + (−1.53 − 0.801i)6-s + (−2.44 + 2.44i)7-s + (0.707 − 0.707i)8-s + (2.46 − 1.71i)9-s + (−0.972 − 2.01i)10-s + 5.62i·11-s + (0.518 + 1.65i)12-s + (0.933 + 0.933i)13-s + 3.45·14-s + (3.87 + 0.122i)15-s − 1.00·16-s + (−0.0532 − 0.0532i)17-s + ⋯
L(s)  = 1  + (−0.499 − 0.499i)2-s + (0.954 − 0.299i)3-s + 0.500i·4-s + (0.944 + 0.329i)5-s + (−0.626 − 0.327i)6-s + (−0.922 + 0.922i)7-s + (0.250 − 0.250i)8-s + (0.820 − 0.571i)9-s + (−0.307 − 0.636i)10-s + 1.69i·11-s + (0.149 + 0.477i)12-s + (0.259 + 0.259i)13-s + 0.922·14-s + (0.999 + 0.0315i)15-s − 0.250·16-s + (−0.0129 − 0.0129i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.980 - 0.198i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.980 - 0.198i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(570\)    =    \(2 \cdot 3 \cdot 5 \cdot 19\)
Sign: $0.980 - 0.198i$
Analytic conductor: \(4.55147\)
Root analytic conductor: \(2.13341\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{570} (533, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 570,\ (\ :1/2),\ 0.980 - 0.198i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.67062 + 0.167885i\)
\(L(\frac12)\) \(\approx\) \(1.67062 + 0.167885i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.707 + 0.707i)T \)
3 \( 1 + (-1.65 + 0.518i)T \)
5 \( 1 + (-2.11 - 0.736i)T \)
19 \( 1 + iT \)
good7 \( 1 + (2.44 - 2.44i)T - 7iT^{2} \)
11 \( 1 - 5.62iT - 11T^{2} \)
13 \( 1 + (-0.933 - 0.933i)T + 13iT^{2} \)
17 \( 1 + (0.0532 + 0.0532i)T + 17iT^{2} \)
23 \( 1 + (-0.841 + 0.841i)T - 23iT^{2} \)
29 \( 1 - 6.56T + 29T^{2} \)
31 \( 1 + 5.11T + 31T^{2} \)
37 \( 1 + (5.88 - 5.88i)T - 37iT^{2} \)
41 \( 1 + 5.75iT - 41T^{2} \)
43 \( 1 + (7.57 + 7.57i)T + 43iT^{2} \)
47 \( 1 + (2.64 + 2.64i)T + 47iT^{2} \)
53 \( 1 + (-9.67 + 9.67i)T - 53iT^{2} \)
59 \( 1 - 11.0T + 59T^{2} \)
61 \( 1 - 9.82T + 61T^{2} \)
67 \( 1 + (-6.27 + 6.27i)T - 67iT^{2} \)
71 \( 1 - 2.29iT - 71T^{2} \)
73 \( 1 + (7.35 + 7.35i)T + 73iT^{2} \)
79 \( 1 + 3.41iT - 79T^{2} \)
83 \( 1 + (4.84 - 4.84i)T - 83iT^{2} \)
89 \( 1 + 4.69T + 89T^{2} \)
97 \( 1 + (4.18 - 4.18i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.16606554747980974329462638918, −9.974598846371893028837496522322, −9.068398728146044241231055176902, −8.513012751838063943998592021604, −7.00609582874336130218490108721, −6.70989732919185521612595029898, −5.16128799899043347032382426711, −3.63372805347073632798090769682, −2.51861033290399904922712997850, −1.86027806024328337399130044102, 1.10295399342884717399891555815, 2.85206203362974493265791655331, 3.86961494431878951425295811103, 5.32590083540506112808312764906, 6.29040037548838538949547106961, 7.16456397083749735177881095660, 8.374994577332169921737758612607, 8.806950266623597879586972873995, 9.835174745043904338152804599966, 10.25853053766913906574782148173

Graph of the $Z$-function along the critical line