L(s) = 1 | + (−0.707 − 0.707i)2-s + (1.34 + 1.08i)3-s + 1.00i·4-s + (−0.539 + 2.17i)5-s + (−0.182 − 1.72i)6-s + (2.86 − 2.86i)7-s + (0.707 − 0.707i)8-s + (0.629 + 2.93i)9-s + (1.91 − 1.15i)10-s + 4.60i·11-s + (−1.08 + 1.34i)12-s + (1.32 + 1.32i)13-s − 4.05·14-s + (−3.08 + 2.33i)15-s − 1.00·16-s + (−3.40 − 3.40i)17-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + (0.777 + 0.628i)3-s + 0.500i·4-s + (−0.241 + 0.970i)5-s + (−0.0746 − 0.703i)6-s + (1.08 − 1.08i)7-s + (0.250 − 0.250i)8-s + (0.209 + 0.977i)9-s + (0.605 − 0.364i)10-s + 1.38i·11-s + (−0.314 + 0.388i)12-s + (0.368 + 0.368i)13-s − 1.08·14-s + (−0.797 + 0.603i)15-s − 0.250·16-s + (−0.825 − 0.825i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.637 - 0.770i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.637 - 0.770i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.38862 + 0.653253i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.38862 + 0.653253i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 + (-1.34 - 1.08i)T \) |
| 5 | \( 1 + (0.539 - 2.17i)T \) |
| 19 | \( 1 - iT \) |
good | 7 | \( 1 + (-2.86 + 2.86i)T - 7iT^{2} \) |
| 11 | \( 1 - 4.60iT - 11T^{2} \) |
| 13 | \( 1 + (-1.32 - 1.32i)T + 13iT^{2} \) |
| 17 | \( 1 + (3.40 + 3.40i)T + 17iT^{2} \) |
| 23 | \( 1 + (-2.00 + 2.00i)T - 23iT^{2} \) |
| 29 | \( 1 - 6.21T + 29T^{2} \) |
| 31 | \( 1 + 3.91T + 31T^{2} \) |
| 37 | \( 1 + (4.28 - 4.28i)T - 37iT^{2} \) |
| 41 | \( 1 - 1.74iT - 41T^{2} \) |
| 43 | \( 1 + (-8.19 - 8.19i)T + 43iT^{2} \) |
| 47 | \( 1 + (-5.22 - 5.22i)T + 47iT^{2} \) |
| 53 | \( 1 + (-4.96 + 4.96i)T - 53iT^{2} \) |
| 59 | \( 1 + 5.08T + 59T^{2} \) |
| 61 | \( 1 + 0.446T + 61T^{2} \) |
| 67 | \( 1 + (-6.27 + 6.27i)T - 67iT^{2} \) |
| 71 | \( 1 + 15.5iT - 71T^{2} \) |
| 73 | \( 1 + (6.36 + 6.36i)T + 73iT^{2} \) |
| 79 | \( 1 - 10.4iT - 79T^{2} \) |
| 83 | \( 1 + (3.87 - 3.87i)T - 83iT^{2} \) |
| 89 | \( 1 + 2.07T + 89T^{2} \) |
| 97 | \( 1 + (-12.5 + 12.5i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.81511981732370155148705729452, −10.07532648294609595898914653017, −9.285226766528321381165583047623, −8.209668584809181837348833473521, −7.46127002712289057949770703408, −6.84319033909030053735075269369, −4.66766058171065963103850285252, −4.20807504700735195458845851022, −2.91324579962580112076153368207, −1.79763109741853381135407145031,
1.04580901559119128591958372138, 2.30183323521474437963241378308, 3.90956486587833298596582367443, 5.33718872390153364985503597559, 5.99692963791981390661497035475, 7.33412795737439498169500623961, 8.283311215719968182239408979001, 8.772100439691316268898785126786, 8.975074152511505774829094585377, 10.62358769762886874586898248352