Properties

Label 2-570-15.8-c1-0-10
Degree $2$
Conductor $570$
Sign $-0.0187 - 0.999i$
Analytic cond. $4.55147$
Root an. cond. $2.13341$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 − 0.707i)2-s + (0.901 + 1.47i)3-s + 1.00i·4-s + (1.61 + 1.54i)5-s + (0.408 − 1.68i)6-s + (−1.95 + 1.95i)7-s + (0.707 − 0.707i)8-s + (−1.37 + 2.66i)9-s + (−0.0553 − 2.23i)10-s − 3.67i·11-s + (−1.47 + 0.901i)12-s + (2.60 + 2.60i)13-s + 2.76·14-s + (−0.819 + 3.78i)15-s − 1.00·16-s + (1.52 + 1.52i)17-s + ⋯
L(s)  = 1  + (−0.499 − 0.499i)2-s + (0.520 + 0.853i)3-s + 0.500i·4-s + (0.724 + 0.689i)5-s + (0.166 − 0.687i)6-s + (−0.737 + 0.737i)7-s + (0.250 − 0.250i)8-s + (−0.457 + 0.888i)9-s + (−0.0175 − 0.706i)10-s − 1.10i·11-s + (−0.426 + 0.260i)12-s + (0.722 + 0.722i)13-s + 0.737·14-s + (−0.211 + 0.977i)15-s − 0.250·16-s + (0.370 + 0.370i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0187 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0187 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(570\)    =    \(2 \cdot 3 \cdot 5 \cdot 19\)
Sign: $-0.0187 - 0.999i$
Analytic conductor: \(4.55147\)
Root analytic conductor: \(2.13341\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{570} (533, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 570,\ (\ :1/2),\ -0.0187 - 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.909623 + 0.926806i\)
\(L(\frac12)\) \(\approx\) \(0.909623 + 0.926806i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.707 + 0.707i)T \)
3 \( 1 + (-0.901 - 1.47i)T \)
5 \( 1 + (-1.61 - 1.54i)T \)
19 \( 1 - iT \)
good7 \( 1 + (1.95 - 1.95i)T - 7iT^{2} \)
11 \( 1 + 3.67iT - 11T^{2} \)
13 \( 1 + (-2.60 - 2.60i)T + 13iT^{2} \)
17 \( 1 + (-1.52 - 1.52i)T + 17iT^{2} \)
23 \( 1 + (0.483 - 0.483i)T - 23iT^{2} \)
29 \( 1 + 8.02T + 29T^{2} \)
31 \( 1 + 3.06T + 31T^{2} \)
37 \( 1 + (-7.32 + 7.32i)T - 37iT^{2} \)
41 \( 1 - 5.46iT - 41T^{2} \)
43 \( 1 + (3.11 + 3.11i)T + 43iT^{2} \)
47 \( 1 + (-3.44 - 3.44i)T + 47iT^{2} \)
53 \( 1 + (7.51 - 7.51i)T - 53iT^{2} \)
59 \( 1 - 11.1T + 59T^{2} \)
61 \( 1 - 0.989T + 61T^{2} \)
67 \( 1 + (-8.05 + 8.05i)T - 67iT^{2} \)
71 \( 1 + 4.07iT - 71T^{2} \)
73 \( 1 + (-11.1 - 11.1i)T + 73iT^{2} \)
79 \( 1 + 7.15iT - 79T^{2} \)
83 \( 1 + (-2.66 + 2.66i)T - 83iT^{2} \)
89 \( 1 - 1.05T + 89T^{2} \)
97 \( 1 + (-5.51 + 5.51i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.02874821491135213341935172293, −9.902804932950261069219077623868, −9.323906017875790716899990798133, −8.741636765763707693196136807399, −7.66185760514249400368962284713, −6.24451004241576057844311477938, −5.60054166735395184242577391878, −3.84054735659685234750668684999, −3.13146935705677496652038187175, −2.05110467770869406644802820635, 0.828448373059475839957882867196, 2.12033339574763638004824218322, 3.67845050250215873123621179323, 5.19740186352321144348573815437, 6.21724337120432381454060212845, 7.01071754470196617035769929035, 7.80742592482794300520334336072, 8.694464251341614867246639176995, 9.629575620082598765492892554499, 10.02228239229843237372007897797

Graph of the $Z$-function along the critical line