L(s) = 1 | + (0.707 − 0.707i)2-s + (0.336 + 1.69i)3-s − 1.00i·4-s + (−2.14 + 0.630i)5-s + (1.43 + 0.963i)6-s + (0.804 + 0.804i)7-s + (−0.707 − 0.707i)8-s + (−2.77 + 1.14i)9-s + (−1.07 + 1.96i)10-s + 3.15i·11-s + (1.69 − 0.336i)12-s + (−2.72 + 2.72i)13-s + 1.13·14-s + (−1.79 − 3.43i)15-s − 1.00·16-s + (−2.04 + 2.04i)17-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s + (0.194 + 0.980i)3-s − 0.500i·4-s + (−0.959 + 0.282i)5-s + (0.587 + 0.393i)6-s + (0.304 + 0.304i)7-s + (−0.250 − 0.250i)8-s + (−0.924 + 0.381i)9-s + (−0.338 + 0.620i)10-s + 0.951i·11-s + (0.490 − 0.0972i)12-s + (−0.757 + 0.757i)13-s + 0.304·14-s + (−0.463 − 0.886i)15-s − 0.250·16-s + (−0.495 + 0.495i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.247 - 0.968i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.247 - 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.779777 + 1.00382i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.779777 + 1.00382i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 + (-0.336 - 1.69i)T \) |
| 5 | \( 1 + (2.14 - 0.630i)T \) |
| 19 | \( 1 + iT \) |
good | 7 | \( 1 + (-0.804 - 0.804i)T + 7iT^{2} \) |
| 11 | \( 1 - 3.15iT - 11T^{2} \) |
| 13 | \( 1 + (2.72 - 2.72i)T - 13iT^{2} \) |
| 17 | \( 1 + (2.04 - 2.04i)T - 17iT^{2} \) |
| 23 | \( 1 + (-1.82 - 1.82i)T + 23iT^{2} \) |
| 29 | \( 1 + 5.49T + 29T^{2} \) |
| 31 | \( 1 - 5.07T + 31T^{2} \) |
| 37 | \( 1 + (-7.25 - 7.25i)T + 37iT^{2} \) |
| 41 | \( 1 - 6.31iT - 41T^{2} \) |
| 43 | \( 1 + (-0.643 + 0.643i)T - 43iT^{2} \) |
| 47 | \( 1 + (3.22 - 3.22i)T - 47iT^{2} \) |
| 53 | \( 1 + (3.16 + 3.16i)T + 53iT^{2} \) |
| 59 | \( 1 + 1.26T + 59T^{2} \) |
| 61 | \( 1 - 2.70T + 61T^{2} \) |
| 67 | \( 1 + (-3.86 - 3.86i)T + 67iT^{2} \) |
| 71 | \( 1 + 0.944iT - 71T^{2} \) |
| 73 | \( 1 + (-3.61 + 3.61i)T - 73iT^{2} \) |
| 79 | \( 1 + 15.0iT - 79T^{2} \) |
| 83 | \( 1 + (-5.54 - 5.54i)T + 83iT^{2} \) |
| 89 | \( 1 - 3.27T + 89T^{2} \) |
| 97 | \( 1 + (-2.89 - 2.89i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.28205076434552055105687496199, −10.12925965977455342044147293811, −9.495097826760550540926123608793, −8.487639796033234412541526573947, −7.48470612524232131720789001029, −6.34307659516511588621238647082, −4.83874502841331556069771237372, −4.49269905692200219771656610123, −3.37394529543075827134585165766, −2.23055743137532997859313078927,
0.58736188327762825954029782247, 2.64533563463535305540161979022, 3.74257108768722715186722192072, 4.95801046644584634803828400879, 5.95333456973950136763428679225, 7.06230371828256306452897621414, 7.71944585660910237993935832825, 8.327010034053281315106518716934, 9.239680481347022247594821560506, 10.89860940495308400695878860136