Properties

Label 2-570-1.1-c5-0-7
Degree $2$
Conductor $570$
Sign $1$
Analytic cond. $91.4187$
Root an. cond. $9.56131$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 9·3-s + 16·4-s − 25·5-s − 36·6-s + 94.6·7-s − 64·8-s + 81·9-s + 100·10-s − 613.·11-s + 144·12-s − 983.·13-s − 378.·14-s − 225·15-s + 256·16-s − 1.41e3·17-s − 324·18-s − 361·19-s − 400·20-s + 851.·21-s + 2.45e3·22-s + 517.·23-s − 576·24-s + 625·25-s + 3.93e3·26-s + 729·27-s + 1.51e3·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s − 0.447·5-s − 0.408·6-s + 0.729·7-s − 0.353·8-s + 0.333·9-s + 0.316·10-s − 1.52·11-s + 0.288·12-s − 1.61·13-s − 0.516·14-s − 0.258·15-s + 0.250·16-s − 1.19·17-s − 0.235·18-s − 0.229·19-s − 0.223·20-s + 0.421·21-s + 1.08·22-s + 0.204·23-s − 0.204·24-s + 0.200·25-s + 1.14·26-s + 0.192·27-s + 0.364·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(570\)    =    \(2 \cdot 3 \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(91.4187\)
Root analytic conductor: \(9.56131\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{570} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 570,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.167237461\)
\(L(\frac12)\) \(\approx\) \(1.167237461\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
3 \( 1 - 9T \)
5 \( 1 + 25T \)
19 \( 1 + 361T \)
good7 \( 1 - 94.6T + 1.68e4T^{2} \)
11 \( 1 + 613.T + 1.61e5T^{2} \)
13 \( 1 + 983.T + 3.71e5T^{2} \)
17 \( 1 + 1.41e3T + 1.41e6T^{2} \)
23 \( 1 - 517.T + 6.43e6T^{2} \)
29 \( 1 - 3.30e3T + 2.05e7T^{2} \)
31 \( 1 - 1.28e3T + 2.86e7T^{2} \)
37 \( 1 - 5.56e3T + 6.93e7T^{2} \)
41 \( 1 - 8.44e3T + 1.15e8T^{2} \)
43 \( 1 - 2.38e4T + 1.47e8T^{2} \)
47 \( 1 + 1.43e4T + 2.29e8T^{2} \)
53 \( 1 + 1.69e4T + 4.18e8T^{2} \)
59 \( 1 - 1.43e4T + 7.14e8T^{2} \)
61 \( 1 - 4.22e4T + 8.44e8T^{2} \)
67 \( 1 - 2.07e4T + 1.35e9T^{2} \)
71 \( 1 - 37.7T + 1.80e9T^{2} \)
73 \( 1 - 3.09e4T + 2.07e9T^{2} \)
79 \( 1 + 6.46e4T + 3.07e9T^{2} \)
83 \( 1 - 1.00e5T + 3.93e9T^{2} \)
89 \( 1 - 4.88e4T + 5.58e9T^{2} \)
97 \( 1 - 9.22e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.898796043568189723260094296883, −9.011567563035694195891131385098, −8.004299213202354875248850430858, −7.70676893719048083496894475708, −6.70066252978662387022882766953, −5.17419118967614531881823820514, −4.39456193803057284325743144110, −2.74224707688861817854190704537, −2.18580980149771089286769258993, −0.54346717931598525439916574571, 0.54346717931598525439916574571, 2.18580980149771089286769258993, 2.74224707688861817854190704537, 4.39456193803057284325743144110, 5.17419118967614531881823820514, 6.70066252978662387022882766953, 7.70676893719048083496894475708, 8.004299213202354875248850430858, 9.011567563035694195891131385098, 9.898796043568189723260094296883

Graph of the $Z$-function along the critical line