Properties

Label 2-570-1.1-c5-0-43
Degree $2$
Conductor $570$
Sign $-1$
Analytic cond. $91.4187$
Root an. cond. $9.56131$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 9·3-s + 16·4-s − 25·5-s − 36·6-s + 22.0·7-s − 64·8-s + 81·9-s + 100·10-s + 191.·11-s + 144·12-s − 381.·13-s − 88.3·14-s − 225·15-s + 256·16-s − 92.9·17-s − 324·18-s + 361·19-s − 400·20-s + 198.·21-s − 764.·22-s − 1.29e3·23-s − 576·24-s + 625·25-s + 1.52e3·26-s + 729·27-s + 353.·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s − 0.447·5-s − 0.408·6-s + 0.170·7-s − 0.353·8-s + 0.333·9-s + 0.316·10-s + 0.476·11-s + 0.288·12-s − 0.626·13-s − 0.120·14-s − 0.258·15-s + 0.250·16-s − 0.0780·17-s − 0.235·18-s + 0.229·19-s − 0.223·20-s + 0.0983·21-s − 0.336·22-s − 0.509·23-s − 0.204·24-s + 0.200·25-s + 0.442·26-s + 0.192·27-s + 0.0851·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(570\)    =    \(2 \cdot 3 \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(91.4187\)
Root analytic conductor: \(9.56131\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 570,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
3 \( 1 - 9T \)
5 \( 1 + 25T \)
19 \( 1 - 361T \)
good7 \( 1 - 22.0T + 1.68e4T^{2} \)
11 \( 1 - 191.T + 1.61e5T^{2} \)
13 \( 1 + 381.T + 3.71e5T^{2} \)
17 \( 1 + 92.9T + 1.41e6T^{2} \)
23 \( 1 + 1.29e3T + 6.43e6T^{2} \)
29 \( 1 - 3.21e3T + 2.05e7T^{2} \)
31 \( 1 + 9.10e3T + 2.86e7T^{2} \)
37 \( 1 - 1.24e4T + 6.93e7T^{2} \)
41 \( 1 + 4.67e3T + 1.15e8T^{2} \)
43 \( 1 - 2.26e3T + 1.47e8T^{2} \)
47 \( 1 - 804.T + 2.29e8T^{2} \)
53 \( 1 - 1.05e4T + 4.18e8T^{2} \)
59 \( 1 - 1.37e4T + 7.14e8T^{2} \)
61 \( 1 + 1.68e4T + 8.44e8T^{2} \)
67 \( 1 + 5.66e4T + 1.35e9T^{2} \)
71 \( 1 + 8.11e4T + 1.80e9T^{2} \)
73 \( 1 + 3.76e3T + 2.07e9T^{2} \)
79 \( 1 - 7.31e4T + 3.07e9T^{2} \)
83 \( 1 - 5.31e4T + 3.93e9T^{2} \)
89 \( 1 + 4.28e4T + 5.58e9T^{2} \)
97 \( 1 + 1.29e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.407729114157246009189808362786, −8.682223946106892279775396287594, −7.77528560038212757444496951169, −7.17636895198622305697647106857, −6.05895498985184078570145838090, −4.69865082642275553494312378484, −3.60632690222014088442786101341, −2.48397992505714044337003320751, −1.33882896458984638232808476385, 0, 1.33882896458984638232808476385, 2.48397992505714044337003320751, 3.60632690222014088442786101341, 4.69865082642275553494312378484, 6.05895498985184078570145838090, 7.17636895198622305697647106857, 7.77528560038212757444496951169, 8.682223946106892279775396287594, 9.407729114157246009189808362786

Graph of the $Z$-function along the critical line