Properties

Label 2-570-1.1-c1-0-6
Degree $2$
Conductor $570$
Sign $1$
Analytic cond. $4.55147$
Root an. cond. $2.13341$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s + 2·7-s + 8-s + 9-s − 10-s − 4·11-s + 12-s + 6·13-s + 2·14-s − 15-s + 16-s + 4·17-s + 18-s + 19-s − 20-s + 2·21-s − 4·22-s + 24-s + 25-s + 6·26-s + 27-s + 2·28-s − 10·29-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.755·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 1.20·11-s + 0.288·12-s + 1.66·13-s + 0.534·14-s − 0.258·15-s + 1/4·16-s + 0.970·17-s + 0.235·18-s + 0.229·19-s − 0.223·20-s + 0.436·21-s − 0.852·22-s + 0.204·24-s + 1/5·25-s + 1.17·26-s + 0.192·27-s + 0.377·28-s − 1.85·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(570\)    =    \(2 \cdot 3 \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(4.55147\)
Root analytic conductor: \(2.13341\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{570} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 570,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.704191420\)
\(L(\frac12)\) \(\approx\) \(2.704191420\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 + T \)
19 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 2 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 + 2 T + p T^{2} \)
83 \( 1 + 10 T + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.01677174780752417160397000119, −10.00807079307099103187847800213, −8.745310200714098149954197552639, −7.948201996751845026195458906853, −7.37575424356828643155557263420, −5.95339000657840846209039457086, −5.11687773951392317925695470662, −3.93643728930441993139518178511, −3.11063806056870265452985737851, −1.63018968978531456834372202160, 1.63018968978531456834372202160, 3.11063806056870265452985737851, 3.93643728930441993139518178511, 5.11687773951392317925695470662, 5.95339000657840846209039457086, 7.37575424356828643155557263420, 7.948201996751845026195458906853, 8.745310200714098149954197552639, 10.00807079307099103187847800213, 11.01677174780752417160397000119

Graph of the $Z$-function along the critical line