Properties

Label 2-56e2-1.1-c1-0-74
Degree $2$
Conductor $3136$
Sign $-1$
Analytic cond. $25.0410$
Root an. cond. $5.00410$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.82·3-s − 1.41·5-s + 5.00·9-s − 4·11-s − 4.24·13-s − 4.00·15-s + 1.41·17-s − 2.82·19-s − 4·23-s − 2.99·25-s + 5.65·27-s − 8·29-s − 11.3·33-s + 8·37-s − 12·39-s − 7.07·41-s + 4·43-s − 7.07·45-s + 5.65·47-s + 4.00·51-s − 10·53-s + 5.65·55-s − 8.00·57-s − 14.1·59-s + 7.07·61-s + 6·65-s − 11.3·69-s + ⋯
L(s)  = 1  + 1.63·3-s − 0.632·5-s + 1.66·9-s − 1.20·11-s − 1.17·13-s − 1.03·15-s + 0.342·17-s − 0.648·19-s − 0.834·23-s − 0.599·25-s + 1.08·27-s − 1.48·29-s − 1.96·33-s + 1.31·37-s − 1.92·39-s − 1.10·41-s + 0.609·43-s − 1.05·45-s + 0.825·47-s + 0.560·51-s − 1.37·53-s + 0.762·55-s − 1.05·57-s − 1.84·59-s + 0.905·61-s + 0.744·65-s − 1.36·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3136 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3136 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3136\)    =    \(2^{6} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(25.0410\)
Root analytic conductor: \(5.00410\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3136,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 2.82T + 3T^{2} \)
5 \( 1 + 1.41T + 5T^{2} \)
11 \( 1 + 4T + 11T^{2} \)
13 \( 1 + 4.24T + 13T^{2} \)
17 \( 1 - 1.41T + 17T^{2} \)
19 \( 1 + 2.82T + 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 + 8T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 8T + 37T^{2} \)
41 \( 1 + 7.07T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 - 5.65T + 47T^{2} \)
53 \( 1 + 10T + 53T^{2} \)
59 \( 1 + 14.1T + 59T^{2} \)
61 \( 1 - 7.07T + 61T^{2} \)
67 \( 1 + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 7.07T + 73T^{2} \)
79 \( 1 - 8T + 79T^{2} \)
83 \( 1 - 14.1T + 83T^{2} \)
89 \( 1 - 7.07T + 89T^{2} \)
97 \( 1 + 1.41T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.036695708653894452443146779578, −7.79378619306368188405469241024, −7.32451516602910773036317892267, −6.08849465501517754617757115250, −5.01805210124390808189485564284, −4.18310334230384274108295725979, −3.44198429164211963672830386157, −2.57285819352033877359464065658, −1.95016533601375678919844923526, 0, 1.95016533601375678919844923526, 2.57285819352033877359464065658, 3.44198429164211963672830386157, 4.18310334230384274108295725979, 5.01805210124390808189485564284, 6.08849465501517754617757115250, 7.32451516602910773036317892267, 7.79378619306368188405469241024, 8.036695708653894452443146779578

Graph of the $Z$-function along the critical line