L(s) = 1 | + 2·5-s − 3·9-s − 4·11-s + 2·13-s + 6·17-s − 8·19-s − 25-s − 6·29-s + 8·31-s + 2·37-s − 2·41-s − 4·43-s − 6·45-s − 8·47-s − 6·53-s − 8·55-s − 6·61-s + 4·65-s − 4·67-s + 8·71-s − 10·73-s − 16·79-s + 9·81-s − 8·83-s + 12·85-s + 6·89-s − 16·95-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 9-s − 1.20·11-s + 0.554·13-s + 1.45·17-s − 1.83·19-s − 1/5·25-s − 1.11·29-s + 1.43·31-s + 0.328·37-s − 0.312·41-s − 0.609·43-s − 0.894·45-s − 1.16·47-s − 0.824·53-s − 1.07·55-s − 0.768·61-s + 0.496·65-s − 0.488·67-s + 0.949·71-s − 1.17·73-s − 1.80·79-s + 81-s − 0.878·83-s + 1.30·85-s + 0.635·89-s − 1.64·95-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3136 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3136 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + p T^{2} \) |
| 5 | \( 1 - 2 T + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 - 2 T + p T^{2} \) |
| 17 | \( 1 - 6 T + p T^{2} \) |
| 19 | \( 1 + 8 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + 6 T + p T^{2} \) |
| 31 | \( 1 - 8 T + p T^{2} \) |
| 37 | \( 1 - 2 T + p T^{2} \) |
| 41 | \( 1 + 2 T + p T^{2} \) |
| 43 | \( 1 + 4 T + p T^{2} \) |
| 47 | \( 1 + 8 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 + 6 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 - 8 T + p T^{2} \) |
| 73 | \( 1 + 10 T + p T^{2} \) |
| 79 | \( 1 + 16 T + p T^{2} \) |
| 83 | \( 1 + 8 T + p T^{2} \) |
| 89 | \( 1 - 6 T + p T^{2} \) |
| 97 | \( 1 - 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.227785865636410870393529644581, −7.84054312303988042972335609462, −6.59264336057149769206055975154, −5.91740132798549001211232285063, −5.47493819124631815597461836959, −4.53211800578457486655010876487, −3.32773603072291404011890923635, −2.58182243115007516792385368988, −1.62407385510972851799092712087, 0,
1.62407385510972851799092712087, 2.58182243115007516792385368988, 3.32773603072291404011890923635, 4.53211800578457486655010876487, 5.47493819124631815597461836959, 5.91740132798549001211232285063, 6.59264336057149769206055975154, 7.84054312303988042972335609462, 8.227785865636410870393529644581