L(s) = 1 | + 2·5-s − 3·9-s − 4·11-s + 2·13-s + 6·17-s − 8·19-s − 25-s − 6·29-s + 8·31-s + 2·37-s − 2·41-s − 4·43-s − 6·45-s − 8·47-s − 6·53-s − 8·55-s − 6·61-s + 4·65-s − 4·67-s + 8·71-s − 10·73-s − 16·79-s + 9·81-s − 8·83-s + 12·85-s + 6·89-s − 16·95-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 9-s − 1.20·11-s + 0.554·13-s + 1.45·17-s − 1.83·19-s − 1/5·25-s − 1.11·29-s + 1.43·31-s + 0.328·37-s − 0.312·41-s − 0.609·43-s − 0.894·45-s − 1.16·47-s − 0.824·53-s − 1.07·55-s − 0.768·61-s + 0.496·65-s − 0.488·67-s + 0.949·71-s − 1.17·73-s − 1.80·79-s + 81-s − 0.878·83-s + 1.30·85-s + 0.635·89-s − 1.64·95-s + ⋯ |
Λ(s)=(=(3136s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(3136s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
good | 3 | 1+pT2 |
| 5 | 1−2T+pT2 |
| 11 | 1+4T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1−6T+pT2 |
| 19 | 1+8T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1−8T+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1+2T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+pT2 |
| 61 | 1+6T+pT2 |
| 67 | 1+4T+pT2 |
| 71 | 1−8T+pT2 |
| 73 | 1+10T+pT2 |
| 79 | 1+16T+pT2 |
| 83 | 1+8T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1−6T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.227785865636410870393529644581, −7.84054312303988042972335609462, −6.59264336057149769206055975154, −5.91740132798549001211232285063, −5.47493819124631815597461836959, −4.53211800578457486655010876487, −3.32773603072291404011890923635, −2.58182243115007516792385368988, −1.62407385510972851799092712087, 0,
1.62407385510972851799092712087, 2.58182243115007516792385368988, 3.32773603072291404011890923635, 4.53211800578457486655010876487, 5.47493819124631815597461836959, 5.91740132798549001211232285063, 6.59264336057149769206055975154, 7.84054312303988042972335609462, 8.227785865636410870393529644581