Properties

Label 2-56e2-1.1-c1-0-36
Degree $2$
Conductor $3136$
Sign $1$
Analytic cond. $25.0410$
Root an. cond. $5.00410$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 5-s + 6·9-s + 11-s + 2·13-s − 3·15-s − 3·17-s + 5·19-s − 3·23-s − 4·25-s + 9·27-s + 6·29-s + 31-s + 3·33-s + 5·37-s + 6·39-s + 10·41-s + 4·43-s − 6·45-s − 47-s − 9·51-s + 9·53-s − 55-s + 15·57-s + 3·59-s + 3·61-s − 2·65-s + ⋯
L(s)  = 1  + 1.73·3-s − 0.447·5-s + 2·9-s + 0.301·11-s + 0.554·13-s − 0.774·15-s − 0.727·17-s + 1.14·19-s − 0.625·23-s − 4/5·25-s + 1.73·27-s + 1.11·29-s + 0.179·31-s + 0.522·33-s + 0.821·37-s + 0.960·39-s + 1.56·41-s + 0.609·43-s − 0.894·45-s − 0.145·47-s − 1.26·51-s + 1.23·53-s − 0.134·55-s + 1.98·57-s + 0.390·59-s + 0.384·61-s − 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3136 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3136 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3136\)    =    \(2^{6} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(25.0410\)
Root analytic conductor: \(5.00410\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{3136} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3136,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.562424783\)
\(L(\frac12)\) \(\approx\) \(3.562424783\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - p T + p T^{2} \)
5 \( 1 + T + p T^{2} \)
11 \( 1 - T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - T + p T^{2} \)
37 \( 1 - 5 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 - 3 T + p T^{2} \)
61 \( 1 - 3 T + p T^{2} \)
67 \( 1 + 11 T + p T^{2} \)
71 \( 1 - 16 T + p T^{2} \)
73 \( 1 + 7 T + p T^{2} \)
79 \( 1 + 11 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 - 9 T + p T^{2} \)
97 \( 1 + 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.610659123795654632557217331858, −8.021601401880149298585346552305, −7.48048240133728696257651714644, −6.67707816953420263959612466092, −5.68153090595164985135423145326, −4.32821372759349923184135183873, −3.96374719743033133519732624431, −3.01236923083428413376519606400, −2.30400510034028172759387387117, −1.13142170095507325535488422533, 1.13142170095507325535488422533, 2.30400510034028172759387387117, 3.01236923083428413376519606400, 3.96374719743033133519732624431, 4.32821372759349923184135183873, 5.68153090595164985135423145326, 6.67707816953420263959612466092, 7.48048240133728696257651714644, 8.021601401880149298585346552305, 8.610659123795654632557217331858

Graph of the $Z$-function along the critical line