L(s) = 1 | − 2·3-s − 4·5-s + 9-s + 8·15-s + 2·17-s + 2·19-s − 8·23-s + 11·25-s + 4·27-s − 2·29-s + 4·31-s + 6·37-s + 2·41-s + 8·43-s − 4·45-s − 4·47-s − 4·51-s + 10·53-s − 4·57-s − 6·59-s + 4·61-s − 12·67-s + 16·69-s + 14·73-s − 22·75-s + 8·79-s − 11·81-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 1.78·5-s + 1/3·9-s + 2.06·15-s + 0.485·17-s + 0.458·19-s − 1.66·23-s + 11/5·25-s + 0.769·27-s − 0.371·29-s + 0.718·31-s + 0.986·37-s + 0.312·41-s + 1.21·43-s − 0.596·45-s − 0.583·47-s − 0.560·51-s + 1.37·53-s − 0.529·57-s − 0.781·59-s + 0.512·61-s − 1.46·67-s + 1.92·69-s + 1.63·73-s − 2.54·75-s + 0.900·79-s − 1.22·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3136 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3136 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 2 T + p T^{2} \) |
| 5 | \( 1 + 4 T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + p T^{2} \) |
| 17 | \( 1 - 2 T + p T^{2} \) |
| 19 | \( 1 - 2 T + p T^{2} \) |
| 23 | \( 1 + 8 T + p T^{2} \) |
| 29 | \( 1 + 2 T + p T^{2} \) |
| 31 | \( 1 - 4 T + p T^{2} \) |
| 37 | \( 1 - 6 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 - 8 T + p T^{2} \) |
| 47 | \( 1 + 4 T + p T^{2} \) |
| 53 | \( 1 - 10 T + p T^{2} \) |
| 59 | \( 1 + 6 T + p T^{2} \) |
| 61 | \( 1 - 4 T + p T^{2} \) |
| 67 | \( 1 + 12 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 - 14 T + p T^{2} \) |
| 79 | \( 1 - 8 T + p T^{2} \) |
| 83 | \( 1 + 6 T + p T^{2} \) |
| 89 | \( 1 + 10 T + p T^{2} \) |
| 97 | \( 1 - 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.983821232000002036742511485775, −7.72782003802833126145569309094, −6.78907197794275632795066073083, −6.02020417555534802053969461502, −5.24725702689372953190086654330, −4.34927860692831690306580619795, −3.81394948833072648510784180802, −2.73255899043208384705811500747, −0.980550638938267372961223820619, 0,
0.980550638938267372961223820619, 2.73255899043208384705811500747, 3.81394948833072648510784180802, 4.34927860692831690306580619795, 5.24725702689372953190086654330, 6.02020417555534802053969461502, 6.78907197794275632795066073083, 7.72782003802833126145569309094, 7.983821232000002036742511485775