Properties

Label 2-56e2-1.1-c1-0-27
Degree $2$
Conductor $3136$
Sign $-1$
Analytic cond. $25.0410$
Root an. cond. $5.00410$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 4·5-s + 9-s + 8·15-s + 2·17-s + 2·19-s − 8·23-s + 11·25-s + 4·27-s − 2·29-s + 4·31-s + 6·37-s + 2·41-s + 8·43-s − 4·45-s − 4·47-s − 4·51-s + 10·53-s − 4·57-s − 6·59-s + 4·61-s − 12·67-s + 16·69-s + 14·73-s − 22·75-s + 8·79-s − 11·81-s + ⋯
L(s)  = 1  − 1.15·3-s − 1.78·5-s + 1/3·9-s + 2.06·15-s + 0.485·17-s + 0.458·19-s − 1.66·23-s + 11/5·25-s + 0.769·27-s − 0.371·29-s + 0.718·31-s + 0.986·37-s + 0.312·41-s + 1.21·43-s − 0.596·45-s − 0.583·47-s − 0.560·51-s + 1.37·53-s − 0.529·57-s − 0.781·59-s + 0.512·61-s − 1.46·67-s + 1.92·69-s + 1.63·73-s − 2.54·75-s + 0.900·79-s − 1.22·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3136 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3136 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3136\)    =    \(2^{6} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(25.0410\)
Root analytic conductor: \(5.00410\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3136,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \)
5 \( 1 + 4 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.983821232000002036742511485775, −7.72782003802833126145569309094, −6.78907197794275632795066073083, −6.02020417555534802053969461502, −5.24725702689372953190086654330, −4.34927860692831690306580619795, −3.81394948833072648510784180802, −2.73255899043208384705811500747, −0.980550638938267372961223820619, 0, 0.980550638938267372961223820619, 2.73255899043208384705811500747, 3.81394948833072648510784180802, 4.34927860692831690306580619795, 5.24725702689372953190086654330, 6.02020417555534802053969461502, 6.78907197794275632795066073083, 7.72782003802833126145569309094, 7.983821232000002036742511485775

Graph of the $Z$-function along the critical line