L(s) = 1 | + (−1.09 + 1.89i)2-s + (−1.39 − 2.41i)4-s + (−0.456 − 0.791i)5-s + (0.5 − 0.866i)7-s + 1.73·8-s + 2·10-s + (−1.32 + 2.29i)11-s + (−2 − 3.46i)13-s + (1.09 + 1.89i)14-s + (0.895 − 1.55i)16-s + 3.46·17-s + 5.58·19-s + (−1.27 + 2.20i)20-s + (−2.89 − 5.01i)22-s + (1.73 + 3i)23-s + ⋯ |
L(s) = 1 | + (−0.773 + 1.34i)2-s + (−0.697 − 1.20i)4-s + (−0.204 − 0.353i)5-s + (0.188 − 0.327i)7-s + 0.612·8-s + 0.632·10-s + (−0.398 + 0.690i)11-s + (−0.554 − 0.960i)13-s + (0.292 + 0.506i)14-s + (0.223 − 0.387i)16-s + 0.840·17-s + 1.28·19-s + (−0.285 + 0.493i)20-s + (−0.617 − 1.06i)22-s + (0.361 + 0.625i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.642 - 0.766i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.792870 + 0.369721i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.792870 + 0.369721i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
good | 2 | \( 1 + (1.09 - 1.89i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (0.456 + 0.791i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.32 - 2.29i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2 + 3.46i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 3.46T + 17T^{2} \) |
| 19 | \( 1 - 5.58T + 19T^{2} \) |
| 23 | \( 1 + (-1.73 - 3i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.37 + 7.58i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.58 - 7.93i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 3T + 37T^{2} \) |
| 41 | \( 1 + (-0.456 - 0.791i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.291 - 0.504i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-6.56 + 11.3i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 8.66T + 53T^{2} \) |
| 59 | \( 1 + (1.73 + 3i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (5.79 - 10.0i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.29 + 7.43i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 4.47T + 71T^{2} \) |
| 73 | \( 1 - 15.1T + 73T^{2} \) |
| 79 | \( 1 + (0.291 - 0.504i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.83 + 8.37i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 1.82T + 89T^{2} \) |
| 97 | \( 1 + (-0.791 + 1.37i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.31021391252303923741909154298, −9.913616121829653414885406969877, −8.900115683851006003348106335749, −7.80465892809382932570321019440, −7.67630781179564031301764945799, −6.56221820867654993970510307998, −5.43056333175083813839039450132, −4.76771617964195010787543787828, −3.03205127530444233551476737746, −0.832746723388056974957765595927,
1.12299168323895143833583310758, 2.61352006719502636512040276616, 3.34287676451731890301288473686, 4.76430272169331327752555937386, 6.04353880431245387068235237180, 7.36471628656565206538896869450, 8.225953770510982839214215512952, 9.204235599873165533275263358089, 9.744568286210127953500009231632, 10.79087824831115845355999026735