Properties

Label 2-567-9.7-c1-0-4
Degree $2$
Conductor $567$
Sign $-0.766 - 0.642i$
Analytic cond. $4.52751$
Root an. cond. $2.12779$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.261 + 0.453i)2-s + (0.862 + 1.49i)4-s + (1.10 + 1.90i)5-s + (−0.5 + 0.866i)7-s − 1.95·8-s − 1.15·10-s + (−2.60 + 4.50i)11-s + (−1.57 − 2.73i)13-s + (−0.261 − 0.453i)14-s + (−1.21 + 2.10i)16-s − 3.24·17-s + 7.45·19-s + (−1.89 + 3.28i)20-s + (−1.36 − 2.36i)22-s + (−2.20 − 3.81i)23-s + ⋯
L(s)  = 1  + (−0.185 + 0.320i)2-s + (0.431 + 0.747i)4-s + (0.492 + 0.852i)5-s + (−0.188 + 0.327i)7-s − 0.690·8-s − 0.364·10-s + (−0.784 + 1.35i)11-s + (−0.437 − 0.757i)13-s + (−0.0700 − 0.121i)14-s + (−0.303 + 0.525i)16-s − 0.788·17-s + 1.70·19-s + (−0.424 + 0.735i)20-s + (−0.290 − 0.503i)22-s + (−0.459 − 0.795i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 - 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(567\)    =    \(3^{4} \cdot 7\)
Sign: $-0.766 - 0.642i$
Analytic conductor: \(4.52751\)
Root analytic conductor: \(2.12779\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{567} (379, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 567,\ (\ :1/2),\ -0.766 - 0.642i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.435547 + 1.19665i\)
\(L(\frac12)\) \(\approx\) \(0.435547 + 1.19665i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + (0.5 - 0.866i)T \)
good2 \( 1 + (0.261 - 0.453i)T + (-1 - 1.73i)T^{2} \)
5 \( 1 + (-1.10 - 1.90i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (2.60 - 4.50i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (1.57 + 2.73i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 + 3.24T + 17T^{2} \)
19 \( 1 - 7.45T + 19T^{2} \)
23 \( 1 + (2.20 + 3.81i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-0.576 + 0.998i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (1 + 1.73i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 - 5T + 37T^{2} \)
41 \( 1 + (-5.72 - 9.91i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (4.64 - 8.05i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (-0.523 + 0.907i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + 0.249T + 53T^{2} \)
59 \( 1 + (-4.04 - 7.01i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (4.30 - 7.45i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-3.80 - 6.58i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 - 9.60T + 71T^{2} \)
73 \( 1 - 0.846T + 73T^{2} \)
79 \( 1 + (-3.80 + 6.58i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (5.72 - 9.91i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 - 9.24T + 89T^{2} \)
97 \( 1 + (-1.72 + 2.98i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.06725041790957288233277922616, −10.04983330838726691221503411034, −9.515361357245066709727448985124, −8.164691700043491950901052264873, −7.48636761207924447189451631922, −6.73796183511447972136218679536, −5.81539885256370337726395860836, −4.55454872295033852097521776112, −2.94128592278145188913111063527, −2.40776218169233389455132665265, 0.74048924406084730901836778466, 2.07926100239783257622211067417, 3.43009135055179421733649115204, 5.08232964704108697978847940680, 5.61446593163200375632734274681, 6.68669663584380727459102927958, 7.76999620176567152236088418313, 9.035555501441875190196423117442, 9.443586559140636115855352945956, 10.42138890016379309326019059389

Graph of the $Z$-function along the critical line