L(s) = 1 | + (−0.261 + 0.453i)2-s + (0.862 + 1.49i)4-s + (1.10 + 1.90i)5-s + (−0.5 + 0.866i)7-s − 1.95·8-s − 1.15·10-s + (−2.60 + 4.50i)11-s + (−1.57 − 2.73i)13-s + (−0.261 − 0.453i)14-s + (−1.21 + 2.10i)16-s − 3.24·17-s + 7.45·19-s + (−1.89 + 3.28i)20-s + (−1.36 − 2.36i)22-s + (−2.20 − 3.81i)23-s + ⋯ |
L(s) = 1 | + (−0.185 + 0.320i)2-s + (0.431 + 0.747i)4-s + (0.492 + 0.852i)5-s + (−0.188 + 0.327i)7-s − 0.690·8-s − 0.364·10-s + (−0.784 + 1.35i)11-s + (−0.437 − 0.757i)13-s + (−0.0700 − 0.121i)14-s + (−0.303 + 0.525i)16-s − 0.788·17-s + 1.70·19-s + (−0.424 + 0.735i)20-s + (−0.290 − 0.503i)22-s + (−0.459 − 0.795i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 - 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.435547 + 1.19665i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.435547 + 1.19665i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
good | 2 | \( 1 + (0.261 - 0.453i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.10 - 1.90i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (2.60 - 4.50i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.57 + 2.73i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 3.24T + 17T^{2} \) |
| 19 | \( 1 - 7.45T + 19T^{2} \) |
| 23 | \( 1 + (2.20 + 3.81i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.576 + 0.998i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1 + 1.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 5T + 37T^{2} \) |
| 41 | \( 1 + (-5.72 - 9.91i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4.64 - 8.05i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.523 + 0.907i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 0.249T + 53T^{2} \) |
| 59 | \( 1 + (-4.04 - 7.01i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.30 - 7.45i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.80 - 6.58i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 9.60T + 71T^{2} \) |
| 73 | \( 1 - 0.846T + 73T^{2} \) |
| 79 | \( 1 + (-3.80 + 6.58i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (5.72 - 9.91i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 9.24T + 89T^{2} \) |
| 97 | \( 1 + (-1.72 + 2.98i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.06725041790957288233277922616, −10.04983330838726691221503411034, −9.515361357245066709727448985124, −8.164691700043491950901052264873, −7.48636761207924447189451631922, −6.73796183511447972136218679536, −5.81539885256370337726395860836, −4.55454872295033852097521776112, −2.94128592278145188913111063527, −2.40776218169233389455132665265,
0.74048924406084730901836778466, 2.07926100239783257622211067417, 3.43009135055179421733649115204, 5.08232964704108697978847940680, 5.61446593163200375632734274681, 6.68669663584380727459102927958, 7.76999620176567152236088418313, 9.035555501441875190196423117442, 9.443586559140636115855352945956, 10.42138890016379309326019059389