L(s) = 1 | + (0.5 − 0.866i)2-s + (0.500 + 0.866i)4-s + (−0.5 − 0.866i)5-s + (0.5 − 0.866i)7-s + 3·8-s − 0.999·10-s + (1 − 1.73i)11-s + (2.5 + 4.33i)13-s + (−0.499 − 0.866i)14-s + (0.500 − 0.866i)16-s + 3·17-s − 2·19-s + (0.499 − 0.866i)20-s + (−0.999 − 1.73i)22-s + (−3 − 5.19i)23-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.250 + 0.433i)4-s + (−0.223 − 0.387i)5-s + (0.188 − 0.327i)7-s + 1.06·8-s − 0.316·10-s + (0.301 − 0.522i)11-s + (0.693 + 1.20i)13-s + (−0.133 − 0.231i)14-s + (0.125 − 0.216i)16-s + 0.727·17-s − 0.458·19-s + (0.111 − 0.193i)20-s + (−0.213 − 0.369i)22-s + (−0.625 − 1.08i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.91448 - 0.696813i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.91448 - 0.696813i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (0.5 + 0.866i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.5 - 4.33i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 3T + 17T^{2} \) |
| 19 | \( 1 + 2T + 19T^{2} \) |
| 23 | \( 1 + (3 + 5.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.5 + 4.33i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3 - 5.19i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 3T + 37T^{2} \) |
| 41 | \( 1 + (-5 - 8.66i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2 + 3.46i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3 + 5.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 6T + 53T^{2} \) |
| 59 | \( 1 + (3 + 5.19i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.5 - 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1 - 1.73i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 12T + 71T^{2} \) |
| 73 | \( 1 + 15T + 73T^{2} \) |
| 79 | \( 1 + (7 - 12.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (9 - 15.5i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 5T + 89T^{2} \) |
| 97 | \( 1 + (-9 + 15.5i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.82768414564893079969128086914, −10.03996502365996857752414646311, −8.674836319106929716571124931836, −8.199022846786281880979328162591, −7.01249251634111514600746523294, −6.14323805117760070964408016096, −4.54492900747510792087865449172, −4.02996872807467022844668338167, −2.77519122003841945282314792036, −1.35838487573151142096633233779,
1.49626899386113813250961403039, 3.10164539934725013716210561112, 4.39511277959102820086688601117, 5.56458345590890897927138428658, 6.10074926404431677972302125838, 7.29995247329131200860920694018, 7.82915392469211992439557756581, 9.044318894565695844381424064002, 10.15600469758599658379462209532, 10.75485500072417480909024911787