L(s) = 1 | + (−0.635 − 1.10i)2-s + (0.193 − 0.334i)4-s + (0.776 + 1.34i)5-s + (−1.48 + 2.18i)7-s − 3.03·8-s + (0.986 − 1.70i)10-s + (−1.60 + 2.77i)11-s + 4.78·13-s + (3.35 + 0.245i)14-s + (1.53 + 2.66i)16-s + (−1.05 + 1.83i)17-s + (2.43 + 4.21i)19-s + 0.600·20-s + 4.07·22-s + (1.85 + 3.21i)23-s + ⋯ |
L(s) = 1 | + (−0.449 − 0.777i)2-s + (0.0966 − 0.167i)4-s + (0.347 + 0.601i)5-s + (−0.561 + 0.827i)7-s − 1.07·8-s + (0.311 − 0.540i)10-s + (−0.483 + 0.838i)11-s + 1.32·13-s + (0.895 + 0.0655i)14-s + (0.384 + 0.666i)16-s + (−0.256 + 0.444i)17-s + (0.557 + 0.966i)19-s + 0.134·20-s + 0.869·22-s + (0.386 + 0.669i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.925 - 0.377i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.925 - 0.377i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.02994 + 0.201900i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.02994 + 0.201900i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (1.48 - 2.18i)T \) |
good | 2 | \( 1 + (0.635 + 1.10i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.776 - 1.34i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.60 - 2.77i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 4.78T + 13T^{2} \) |
| 17 | \( 1 + (1.05 - 1.83i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.43 - 4.21i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.85 - 3.21i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 7.37T + 29T^{2} \) |
| 31 | \( 1 + (2.75 - 4.76i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.0932 - 0.161i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 10.7T + 41T^{2} \) |
| 43 | \( 1 - 4.86T + 43T^{2} \) |
| 47 | \( 1 + (-0.885 - 1.53i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.834 + 1.44i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.91 + 5.04i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.43 + 5.95i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.11 - 10.5i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 13.8T + 71T^{2} \) |
| 73 | \( 1 + (5.93 - 10.2i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.654 - 1.13i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 0.346T + 83T^{2} \) |
| 89 | \( 1 + (8.70 + 15.0i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 10.5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.81238265963602489240057257342, −9.943233139257572878594777427277, −9.348905945223813436282449404450, −8.460168848099577410334838224152, −7.15672425014332638194147157787, −6.09163611903928612930408125871, −5.56484173657085013348049975795, −3.69631517297824351070651649362, −2.67201319597907113378013633941, −1.62563614773303150125020108312,
0.70758864984472242576688756720, 2.87320330182179210669973616218, 3.96586057341497644931323163678, 5.46855281463627861861516463701, 6.23528190799873408384716248044, 7.19946085815776074033992042766, 7.933283396821627961407420748195, 9.092300668377523490104933086289, 9.252901163398461859266344335800, 10.81769901025726592951364884892