L(s) = 1 | − 2.69·2-s + 5.28·4-s + (−0.794 − 1.37i)5-s + (−2.64 + 0.0963i)7-s − 8.87·8-s + (2.14 + 3.71i)10-s + (0.150 − 0.260i)11-s + (−1.40 + 2.43i)13-s + (7.13 − 0.260i)14-s + 13.3·16-s + (2.93 + 5.08i)17-s + (1.14 − 1.98i)19-s + (−4.19 − 7.27i)20-s + (−0.405 + 0.702i)22-s + (0.944 + 1.63i)23-s + ⋯ |
L(s) = 1 | − 1.90·2-s + 2.64·4-s + (−0.355 − 0.615i)5-s + (−0.999 + 0.0364i)7-s − 3.13·8-s + (0.677 + 1.17i)10-s + (0.0452 − 0.0784i)11-s + (−0.389 + 0.675i)13-s + (1.90 − 0.0695i)14-s + 3.34·16-s + (0.712 + 1.23i)17-s + (0.262 − 0.454i)19-s + (−0.939 − 1.62i)20-s + (−0.0864 + 0.149i)22-s + (0.196 + 0.341i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.962 - 0.270i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.962 - 0.270i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.448526 + 0.0619121i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.448526 + 0.0619121i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (2.64 - 0.0963i)T \) |
good | 2 | \( 1 + 2.69T + 2T^{2} \) |
| 5 | \( 1 + (0.794 + 1.37i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.150 + 0.260i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.40 - 2.43i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.93 - 5.08i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.14 + 1.98i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.944 - 1.63i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.26 - 2.18i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 4.81T + 31T^{2} \) |
| 37 | \( 1 + (-2.23 + 3.87i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.45 + 7.71i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.54 - 7.87i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 3.21T + 47T^{2} \) |
| 53 | \( 1 + (-1.00 - 1.74i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 4.88T + 59T^{2} \) |
| 61 | \( 1 - 7.57T + 61T^{2} \) |
| 67 | \( 1 - 0.712T + 67T^{2} \) |
| 71 | \( 1 - 12.8T + 71T^{2} \) |
| 73 | \( 1 + (-5.83 - 10.1i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 1.66T + 79T^{2} \) |
| 83 | \( 1 + (2.71 + 4.70i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (4.67 - 8.10i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.28 - 10.8i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.54087204879815431850796965915, −9.650527304950468459205014067613, −9.116259487277813973550415051310, −8.344051803623816195688417575135, −7.43505786179578063357099553299, −6.66568093694992209653047731436, −5.66153130214581415464833478639, −3.77784846303759789923358263789, −2.39551526956320008215740957342, −0.894053063294227549349329949713,
0.66737402094787153529529167900, 2.55505911822643246321723439498, 3.36379724793488595934464380471, 5.60272252631564518666869170724, 6.71248380500341696692420259061, 7.32448210505210450737047499094, 8.020086784141918405631677016669, 9.163452037901872439323492675565, 9.773750624035691094956545446064, 10.39541435078228570434928000791