L(s) = 1 | + (−0.764 + 1.32i)2-s + (−0.167 − 0.290i)4-s + 2.82·5-s + (0.955 − 2.46i)7-s − 2.54·8-s + (−2.15 + 3.73i)10-s + 3.63·11-s + (2.81 − 4.87i)13-s + (2.53 + 3.14i)14-s + (2.27 − 3.94i)16-s + (−1.60 + 2.77i)17-s + (−2.03 − 3.52i)19-s + (−0.473 − 0.820i)20-s + (−2.77 + 4.81i)22-s + 4.70·23-s + ⋯ |
L(s) = 1 | + (−0.540 + 0.935i)2-s + (−0.0838 − 0.145i)4-s + 1.26·5-s + (0.361 − 0.932i)7-s − 0.899·8-s + (−0.682 + 1.18i)10-s + 1.09·11-s + (0.780 − 1.35i)13-s + (0.677 + 0.841i)14-s + (0.569 − 0.986i)16-s + (−0.388 + 0.672i)17-s + (−0.466 − 0.808i)19-s + (−0.105 − 0.183i)20-s + (−0.592 + 1.02i)22-s + 0.980·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.704 - 0.709i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.704 - 0.709i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.38625 + 0.576966i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.38625 + 0.576966i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.955 + 2.46i)T \) |
good | 2 | \( 1 + (0.764 - 1.32i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 - 2.82T + 5T^{2} \) |
| 11 | \( 1 - 3.63T + 11T^{2} \) |
| 13 | \( 1 + (-2.81 + 4.87i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (1.60 - 2.77i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.03 + 3.52i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 4.70T + 23T^{2} \) |
| 29 | \( 1 + (2.16 + 3.74i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.79 + 3.10i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.15 - 3.73i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.57 - 2.72i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.59 - 7.96i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (2.42 - 4.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (7.06 - 12.2i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (0.750 + 1.29i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (6.60 - 11.4i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.34 - 10.9i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 2.91T + 71T^{2} \) |
| 73 | \( 1 + (1.46 - 2.53i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.446 - 0.773i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (4.02 + 6.97i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (2.82 + 4.89i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (2.56 + 4.44i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.72122924456382738128083345817, −9.738072587596312325958166881706, −9.011463655004701079207682962653, −8.170352996781359739293253710488, −7.25506687203144889448505987917, −6.30141282627300114002806554874, −5.83405807021219144171615241542, −4.37164871560508115054751094666, −2.95610048658099125303340324439, −1.21787758154654761389105972818,
1.59721895427643320941095959631, 2.10628462665347109519396828305, 3.57244002050278653392051479601, 5.14429677965995218142823912827, 6.13780355822554693045993344191, 6.74793491739838375007343500773, 8.618994580049385506120526240371, 9.187044382764297005687217293206, 9.537034111351160214344238470500, 10.73719408127191226817579792794