L(s) = 1 | + (0.5 + 0.866i)4-s + (0.5 − 0.866i)7-s + (−0.499 + 0.866i)16-s + (−0.5 + 0.866i)25-s + 0.999·28-s − 2·37-s + (1 − 1.73i)43-s + (−0.499 − 0.866i)49-s − 0.999·64-s + (−1 − 1.73i)67-s + (−1 + 1.73i)79-s − 0.999·100-s − 2·109-s + (0.499 + 0.866i)112-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)4-s + (0.5 − 0.866i)7-s + (−0.499 + 0.866i)16-s + (−0.5 + 0.866i)25-s + 0.999·28-s − 2·37-s + (1 − 1.73i)43-s + (−0.499 − 0.866i)49-s − 0.999·64-s + (−1 − 1.73i)67-s + (−1 + 1.73i)79-s − 0.999·100-s − 2·109-s + (0.499 + 0.866i)112-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.028410267\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.028410267\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + 2T + T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.99940424432874667142901200152, −10.37637298825697509188547777643, −9.128346622071799831094325365762, −8.222153128999321471228880011665, −7.40060848009186530620805562733, −6.80111424525177415749482258036, −5.44727404574104740297571047752, −4.19673234047705220604607422569, −3.34247075571284060273309278450, −1.86503485769790619053707558087,
1.67920132820486876628609592671, 2.80538349100618224694946826426, 4.50423450333269919520417536148, 5.50263309187791770556900334756, 6.20764933553850848495352885464, 7.25944728115866275533600091715, 8.334820930453629618858090074600, 9.215880219020450968942326803420, 10.11069840414037343952479266800, 10.90247207123009149946381141655