L(s) = 1 | + (0.764 + 1.32i)2-s + (−0.167 + 0.290i)4-s − 2.82·5-s + (0.955 + 2.46i)7-s + 2.54·8-s + (−2.15 − 3.73i)10-s − 3.63·11-s + (2.81 + 4.87i)13-s + (−2.53 + 3.14i)14-s + (2.27 + 3.94i)16-s + (1.60 + 2.77i)17-s + (−2.03 + 3.52i)19-s + (0.473 − 0.820i)20-s + (−2.77 − 4.81i)22-s − 4.70·23-s + ⋯ |
L(s) = 1 | + (0.540 + 0.935i)2-s + (−0.0838 + 0.145i)4-s − 1.26·5-s + (0.361 + 0.932i)7-s + 0.899·8-s + (−0.682 − 1.18i)10-s − 1.09·11-s + (0.780 + 1.35i)13-s + (−0.677 + 0.841i)14-s + (0.569 + 0.986i)16-s + (0.388 + 0.672i)17-s + (−0.466 + 0.808i)19-s + (0.105 − 0.183i)20-s + (−0.592 − 1.02i)22-s − 0.980·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.704 - 0.709i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.704 - 0.709i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.585783 + 1.40744i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.585783 + 1.40744i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.955 - 2.46i)T \) |
good | 2 | \( 1 + (-0.764 - 1.32i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + 2.82T + 5T^{2} \) |
| 11 | \( 1 + 3.63T + 11T^{2} \) |
| 13 | \( 1 + (-2.81 - 4.87i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.60 - 2.77i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.03 - 3.52i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 4.70T + 23T^{2} \) |
| 29 | \( 1 + (-2.16 + 3.74i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.79 - 3.10i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.15 + 3.73i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.57 - 2.72i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.59 + 7.96i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.42 - 4.19i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-7.06 - 12.2i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.750 + 1.29i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.60 + 11.4i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.34 + 10.9i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 2.91T + 71T^{2} \) |
| 73 | \( 1 + (1.46 + 2.53i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.446 + 0.773i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.02 + 6.97i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-2.82 + 4.89i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (2.56 - 4.44i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.12113445978057535524704514993, −10.40962656487779823022834927826, −8.975499252967931669586802316371, −8.011930870448921956349360229500, −7.67820082599454415011854737398, −6.36028358548457931909689009702, −5.71338918070570473549980708859, −4.55972864634570671008421118026, −3.80676097898664041415825145568, −1.98978296179666246067422445463,
0.74947522503519489732502514290, 2.67171856088688898026743361910, 3.62040504220016247351843064245, 4.38946746523691036972791485496, 5.38911631374882302132839473152, 7.10864489291373950797674453590, 7.83129003895200151553260661412, 8.308761589369915091876769175120, 10.07699378387094115892284415676, 10.69385142338048536945955410860