L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.500 − 0.866i)4-s − 4·5-s + (0.5 + 2.59i)7-s − 3·8-s + (2 + 3.46i)10-s + 2·11-s + (−0.5 − 0.866i)13-s + (2 − 1.73i)14-s + (0.500 + 0.866i)16-s + (3 + 5.19i)17-s + (−2 + 3.46i)19-s + (−2.00 + 3.46i)20-s + (−1 − 1.73i)22-s + 6·23-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.250 − 0.433i)4-s − 1.78·5-s + (0.188 + 0.981i)7-s − 1.06·8-s + (0.632 + 1.09i)10-s + 0.603·11-s + (−0.138 − 0.240i)13-s + (0.534 − 0.462i)14-s + (0.125 + 0.216i)16-s + (0.727 + 1.26i)17-s + (−0.458 + 0.794i)19-s + (−0.447 + 0.774i)20-s + (−0.213 − 0.369i)22-s + 1.25·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.823 - 0.566i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.823 - 0.566i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.671834 + 0.208767i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.671834 + 0.208767i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 - 2.59i)T \) |
good | 2 | \( 1 + (0.5 + 0.866i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + 4T + 5T^{2} \) |
| 11 | \( 1 - 2T + 11T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-3 - 5.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2 - 3.46i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 6T + 23T^{2} \) |
| 29 | \( 1 + (1 - 1.73i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.5 - 2.59i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.5 - 2.59i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1 - 1.73i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (3 + 5.19i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-3 - 5.19i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3 - 5.19i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.5 - 4.33i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.5 - 6.06i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + (-3 - 5.19i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5.5 + 9.52i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3 - 5.19i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-2 + 3.46i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (4.5 - 7.79i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.93772933647595834867251800788, −10.17838508045594631513693907278, −8.900077877119511017468084138857, −8.452588493066470824775472935302, −7.39960014622448238753020063196, −6.30254567188635709828391854546, −5.23658811508593701327335221441, −3.89588499383944008974335264691, −2.97333866612490550185210634868, −1.36662467734858769962277702162,
0.49456360792895118560005920690, 3.06823900998149883107946830523, 3.92579464705749345033450504392, 4.88486980128595094110576549777, 6.65985496867972150904102824922, 7.27406392210353027661087138961, 7.73616781858480544046532422907, 8.657568276481484185048125538640, 9.508188961198006303690068855136, 11.05288109472820010693131814896