L(s) = 1 | + (−0.298 − 0.517i)2-s + (0.821 − 1.42i)4-s − 2.09·5-s + (−1.51 − 2.17i)7-s − 2.17·8-s + (0.625 + 1.08i)10-s − 1.65·11-s + (0.213 + 0.368i)13-s + (−0.672 + 1.43i)14-s + (−0.993 − 1.72i)16-s + (3.03 + 5.26i)17-s + (−2.70 + 4.68i)19-s + (−1.72 + 2.98i)20-s + (0.493 + 0.854i)22-s − 7.63·23-s + ⋯ |
L(s) = 1 | + (−0.211 − 0.365i)2-s + (0.410 − 0.711i)4-s − 0.937·5-s + (−0.570 − 0.821i)7-s − 0.769·8-s + (0.197 + 0.342i)10-s − 0.497·11-s + (0.0590 + 0.102i)13-s + (−0.179 + 0.382i)14-s + (−0.248 − 0.430i)16-s + (0.736 + 1.27i)17-s + (−0.620 + 1.07i)19-s + (−0.384 + 0.666i)20-s + (0.105 + 0.182i)22-s − 1.59·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.852 - 0.523i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.852 - 0.523i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0782754 + 0.277044i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0782754 + 0.277044i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (1.51 + 2.17i)T \) |
good | 2 | \( 1 + (0.298 + 0.517i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + 2.09T + 5T^{2} \) |
| 11 | \( 1 + 1.65T + 11T^{2} \) |
| 13 | \( 1 + (-0.213 - 0.368i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.03 - 5.26i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.70 - 4.68i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 7.63T + 23T^{2} \) |
| 29 | \( 1 + (-1.82 + 3.16i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.65 + 4.59i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.33 + 4.05i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.742 + 1.28i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4.24 - 7.35i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (5.66 + 9.81i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (2.74 + 4.75i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.779 + 1.34i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.52 + 4.37i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.61 + 4.52i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 12.5T + 71T^{2} \) |
| 73 | \( 1 + (0.793 + 1.37i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.81 - 6.60i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.62 - 4.55i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-9.27 + 16.0i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (6.87 - 11.9i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.11784697599681378659788370625, −9.868691626127290424440110269437, −8.248110806639971390643964684404, −7.75776090082068458479156792208, −6.47097588275820650194773441266, −5.83270491674680932232983340677, −4.24724221873827134348108289430, −3.44490705433391974576933317105, −1.85326696256219393281722831693, −0.16328639232139906382655753384,
2.60377303875470019476301133769, 3.37863443177671798423280944242, 4.71969429352390283426204496694, 5.99183905740557080661428868401, 6.91839448133479851413771476001, 7.76192551500473674883054753277, 8.437364670995570818001314532036, 9.287577176716753334241804621575, 10.36636548528645650748408291663, 11.60831482333109848997357912427