L(s) = 1 | + (−0.768 − 1.33i)2-s + (−0.180 + 0.312i)4-s + 3.15·5-s + (−0.00900 − 2.64i)7-s − 2.51·8-s + (−2.42 − 4.20i)10-s − 5.74·11-s + (0.180 + 0.312i)13-s + (−3.51 + 2.04i)14-s + (2.29 + 3.97i)16-s + (−1.38 − 2.40i)17-s + (3.61 − 6.26i)19-s + (−0.569 + 0.986i)20-s + (4.41 + 7.65i)22-s − 0.824·23-s + ⋯ |
L(s) = 1 | + (−0.543 − 0.940i)2-s + (−0.0902 + 0.156i)4-s + 1.41·5-s + (−0.00340 − 0.999i)7-s − 0.890·8-s + (−0.767 − 1.32i)10-s − 1.73·11-s + (0.0500 + 0.0866i)13-s + (−0.939 + 0.546i)14-s + (0.573 + 0.994i)16-s + (−0.336 − 0.583i)17-s + (0.829 − 1.43i)19-s + (−0.127 + 0.220i)20-s + (0.941 + 1.63i)22-s − 0.171·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.914 + 0.403i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.914 + 0.403i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.233358 - 1.10611i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.233358 - 1.10611i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (0.00900 + 2.64i)T \) |
good | 2 | \( 1 + (0.768 + 1.33i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 - 3.15T + 5T^{2} \) |
| 11 | \( 1 + 5.74T + 11T^{2} \) |
| 13 | \( 1 + (-0.180 - 0.312i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1.38 + 2.40i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.61 + 6.26i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 0.824T + 23T^{2} \) |
| 29 | \( 1 + (-2.13 + 3.70i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.49 + 4.31i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3.74 - 6.48i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.66 - 2.88i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.93 + 6.81i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.74 - 3.01i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.45 - 2.52i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (1.19 - 2.07i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.60 + 2.77i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.949 - 1.64i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 1.60T + 71T^{2} \) |
| 73 | \( 1 + (-7.70 - 13.3i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.73 + 4.73i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.51 + 11.2i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-7.13 + 12.3i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (8.00 - 13.8i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.29992318424268155579719197327, −9.790660971972959791491264024783, −9.031539035672999137371760733817, −7.80758253405816207597327599441, −6.73531570276607856497753075266, −5.69976554306852441466993054319, −4.76513362730109879026010073757, −2.95283613175327988529467332635, −2.22640729744982323693711035457, −0.73265502211347225215863832170,
2.06487337656194591491898263297, 3.08238945896801249981852350841, 5.30538726006822154803095991814, 5.67541740765798151981750494603, 6.51171697947013990608226764909, 7.71131638999059715795011422194, 8.397186328081297908920516146243, 9.241786456417501081955196916796, 10.01728196318368895324188444798, 10.78510574422079054817129750191