L(s) = 1 | + (0.380 + 0.658i)2-s + (0.710 − 1.23i)4-s − 3.18·5-s + (1.85 − 1.88i)7-s + 2.60·8-s + (−1.21 − 2.09i)10-s − 2.23·11-s + (−1.85 − 3.20i)13-s + (1.94 + 0.501i)14-s + (−0.430 − 0.746i)16-s + (−2.80 − 4.85i)17-s + (−2.21 + 3.82i)19-s + (−2.26 + 3.91i)20-s + (−0.851 − 1.47i)22-s + 0.942·23-s + ⋯ |
L(s) = 1 | + (0.269 + 0.465i)2-s + (0.355 − 0.615i)4-s − 1.42·5-s + (0.699 − 0.714i)7-s + 0.920·8-s + (−0.382 − 0.663i)10-s − 0.675·11-s + (−0.513 − 0.889i)13-s + (0.521 + 0.133i)14-s + (−0.107 − 0.186i)16-s + (−0.679 − 1.17i)17-s + (−0.507 + 0.878i)19-s + (−0.505 + 0.875i)20-s + (−0.181 − 0.314i)22-s + 0.196·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.160 + 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.160 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.941407 - 0.801066i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.941407 - 0.801066i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-1.85 + 1.88i)T \) |
good | 2 | \( 1 + (-0.380 - 0.658i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + 3.18T + 5T^{2} \) |
| 11 | \( 1 + 2.23T + 11T^{2} \) |
| 13 | \( 1 + (1.85 + 3.20i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (2.80 + 4.85i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.21 - 3.82i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 0.942T + 23T^{2} \) |
| 29 | \( 1 + (-5.06 + 8.76i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.85 + 4.93i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.56 - 2.70i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.99 - 3.45i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.64 + 2.84i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.112 + 0.195i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.33 - 9.23i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (1.02 - 1.78i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.92 - 5.05i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.71 - 6.42i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 7.26T + 71T^{2} \) |
| 73 | \( 1 + (3.77 + 6.54i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.41 - 5.91i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (4.05 - 7.02i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-4.86 + 8.42i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (0.421 - 0.729i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.58508196465080318870765211742, −9.973924669713300317278831954222, −8.358700308410631093848287580820, −7.66751177506074535962193581020, −7.21143083469053195323476794457, −5.94245554927764345714726515632, −4.78082862574103300723249158422, −4.22546093394222687841308405779, −2.59848240983830719508516864647, −0.63635880167458986614212850528,
2.01802247266606755485911543562, 3.14655673961545478536101445991, 4.29915490555750840407949755446, 4.92152969089748189470162017284, 6.67577242910948835809033202434, 7.43490235886575496887463879618, 8.380598980581586051302470637137, 8.793591334371086447736577396392, 10.57651891092915918737954923280, 11.08246245999083004522079730020