Properties

Label 2-567-189.104-c1-0-12
Degree $2$
Conductor $567$
Sign $0.991 + 0.132i$
Analytic cond. $4.52751$
Root an. cond. $2.12779$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.234 − 0.645i)2-s + (1.17 + 0.982i)4-s + (−0.231 + 1.31i)5-s + (1.38 − 2.25i)7-s + (2.09 − 1.21i)8-s + (0.793 + 0.458i)10-s + (−0.216 + 0.0381i)11-s + (0.673 + 1.85i)13-s + (−1.13 − 1.42i)14-s + (0.242 + 1.37i)16-s + (0.469 − 0.813i)17-s + (3.04 − 1.75i)19-s + (−1.56 + 1.31i)20-s + (−0.0262 + 0.148i)22-s + (−1.17 + 1.40i)23-s + ⋯
L(s)  = 1  + (0.166 − 0.456i)2-s + (0.585 + 0.491i)4-s + (−0.103 + 0.588i)5-s + (0.521 − 0.852i)7-s + (0.741 − 0.428i)8-s + (0.251 + 0.144i)10-s + (−0.0652 + 0.0115i)11-s + (0.186 + 0.513i)13-s + (−0.302 − 0.379i)14-s + (0.0605 + 0.343i)16-s + (0.113 − 0.197i)17-s + (0.697 − 0.402i)19-s + (−0.349 + 0.293i)20-s + (−0.00558 + 0.0316i)22-s + (−0.245 + 0.292i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.132i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 + 0.132i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(567\)    =    \(3^{4} \cdot 7\)
Sign: $0.991 + 0.132i$
Analytic conductor: \(4.52751\)
Root analytic conductor: \(2.12779\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{567} (503, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 567,\ (\ :1/2),\ 0.991 + 0.132i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.99484 - 0.132754i\)
\(L(\frac12)\) \(\approx\) \(1.99484 - 0.132754i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + (-1.38 + 2.25i)T \)
good2 \( 1 + (-0.234 + 0.645i)T + (-1.53 - 1.28i)T^{2} \)
5 \( 1 + (0.231 - 1.31i)T + (-4.69 - 1.71i)T^{2} \)
11 \( 1 + (0.216 - 0.0381i)T + (10.3 - 3.76i)T^{2} \)
13 \( 1 + (-0.673 - 1.85i)T + (-9.95 + 8.35i)T^{2} \)
17 \( 1 + (-0.469 + 0.813i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-3.04 + 1.75i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (1.17 - 1.40i)T + (-3.99 - 22.6i)T^{2} \)
29 \( 1 + (-1.33 + 3.66i)T + (-22.2 - 18.6i)T^{2} \)
31 \( 1 + (5.95 - 7.09i)T + (-5.38 - 30.5i)T^{2} \)
37 \( 1 + (1.56 - 2.71i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-10.8 + 3.95i)T + (31.4 - 26.3i)T^{2} \)
43 \( 1 + (0.261 + 1.48i)T + (-40.4 + 14.7i)T^{2} \)
47 \( 1 + (5.18 - 4.35i)T + (8.16 - 46.2i)T^{2} \)
53 \( 1 - 3.77iT - 53T^{2} \)
59 \( 1 + (-1.72 + 9.76i)T + (-55.4 - 20.1i)T^{2} \)
61 \( 1 + (6.04 + 7.20i)T + (-10.5 + 60.0i)T^{2} \)
67 \( 1 + (6.36 - 2.31i)T + (51.3 - 43.0i)T^{2} \)
71 \( 1 + (11.8 + 6.85i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + (-7.68 + 4.43i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (7.91 + 2.88i)T + (60.5 + 50.7i)T^{2} \)
83 \( 1 + (16.1 + 5.88i)T + (63.5 + 53.3i)T^{2} \)
89 \( 1 + (-3.46 - 5.99i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (4.42 - 0.780i)T + (91.1 - 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.92545954901414206522988113867, −10.18874414853396948188953059722, −9.025160300638560140142098132202, −7.75466357928702880206783439892, −7.27172087736784628101622814853, −6.40567591702842283218522997733, −4.88723117518086760480901073716, −3.82416938443749545190594781600, −2.91404077091349791514552170120, −1.52011896800860769234037208073, 1.39529206755886985430225572194, 2.72151477799776292920438585126, 4.41222003871875480119253718301, 5.47840918989907103931920170570, 5.90850148327915004309488138449, 7.21649857727250909955496221225, 8.037911144892603247445092576591, 8.861474503118441878017308599365, 9.896100567643162663672556855064, 10.86145485877351477730112543848

Graph of the $Z$-function along the critical line