Properties

Label 2-567-1.1-c1-0-7
Degree $2$
Conductor $567$
Sign $1$
Analytic cond. $4.52751$
Root an. cond. $2.12779$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.66·2-s + 5.12·4-s + 1.45·5-s + 7-s − 8.33·8-s − 3.88·10-s + 1.54·11-s + 5.88·13-s − 2.66·14-s + 12.0·16-s + 6.79·17-s − 6.24·19-s + 7.45·20-s − 4.12·22-s − 2.90·23-s − 2.88·25-s − 15.7·26-s + 5.12·28-s − 3.88·29-s + 2·31-s − 15.3·32-s − 18.1·34-s + 1.45·35-s + 5·37-s + 16.6·38-s − 12.1·40-s + 2.24·41-s + ⋯
L(s)  = 1  − 1.88·2-s + 2.56·4-s + 0.650·5-s + 0.377·7-s − 2.94·8-s − 1.22·10-s + 0.465·11-s + 1.63·13-s − 0.713·14-s + 3.00·16-s + 1.64·17-s − 1.43·19-s + 1.66·20-s − 0.879·22-s − 0.606·23-s − 0.576·25-s − 3.07·26-s + 0.968·28-s − 0.721·29-s + 0.359·31-s − 2.71·32-s − 3.10·34-s + 0.245·35-s + 0.821·37-s + 2.70·38-s − 1.91·40-s + 0.351·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(567\)    =    \(3^{4} \cdot 7\)
Sign: $1$
Analytic conductor: \(4.52751\)
Root analytic conductor: \(2.12779\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 567,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8080898510\)
\(L(\frac12)\) \(\approx\) \(0.8080898510\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - T \)
good2 \( 1 + 2.66T + 2T^{2} \)
5 \( 1 - 1.45T + 5T^{2} \)
11 \( 1 - 1.54T + 11T^{2} \)
13 \( 1 - 5.88T + 13T^{2} \)
17 \( 1 - 6.79T + 17T^{2} \)
19 \( 1 + 6.24T + 19T^{2} \)
23 \( 1 + 2.90T + 23T^{2} \)
29 \( 1 + 3.88T + 29T^{2} \)
31 \( 1 - 2T + 31T^{2} \)
37 \( 1 - 5T + 37T^{2} \)
41 \( 1 - 2.24T + 41T^{2} \)
43 \( 1 + 7.13T + 43T^{2} \)
47 \( 1 - 5.33T + 47T^{2} \)
53 \( 1 - 9.79T + 53T^{2} \)
59 \( 1 - 4.67T + 59T^{2} \)
61 \( 1 + 2.36T + 61T^{2} \)
67 \( 1 - 3.36T + 67T^{2} \)
71 \( 1 + 1.36T + 71T^{2} \)
73 \( 1 + 1.88T + 73T^{2} \)
79 \( 1 - 3.36T + 79T^{2} \)
83 \( 1 + 2.24T + 83T^{2} \)
89 \( 1 + 0.793T + 89T^{2} \)
97 \( 1 - 10.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.42659999134972895711053023129, −9.880975183866917534673380678283, −8.919123843560965511580620413877, −8.327251558468038827133760404133, −7.51875064920561374435167811396, −6.32017146365063704166652220210, −5.82174409256645307220823685423, −3.71313678793279702236690079027, −2.13978568383100041861733523018, −1.14553341242214246398375788316, 1.14553341242214246398375788316, 2.13978568383100041861733523018, 3.71313678793279702236690079027, 5.82174409256645307220823685423, 6.32017146365063704166652220210, 7.51875064920561374435167811396, 8.327251558468038827133760404133, 8.919123843560965511580620413877, 9.880975183866917534673380678283, 10.42659999134972895711053023129

Graph of the $Z$-function along the critical line