L(s) = 1 | − 2-s − 3-s + 4-s − 5-s + 6-s + 4·7-s − 8-s + 9-s + 10-s + 11-s − 12-s − 4·13-s − 4·14-s + 15-s + 16-s + 17-s − 18-s + 4·19-s − 20-s − 4·21-s − 22-s + 24-s + 25-s + 4·26-s − 27-s + 4·28-s − 8·29-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 1.51·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.301·11-s − 0.288·12-s − 1.10·13-s − 1.06·14-s + 0.258·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s + 0.917·19-s − 0.223·20-s − 0.872·21-s − 0.213·22-s + 0.204·24-s + 1/5·25-s + 0.784·26-s − 0.192·27-s + 0.755·28-s − 1.48·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 + T \) |
| 11 | \( 1 - T \) |
| 17 | \( 1 - T \) |
good | 7 | \( 1 - 4 T + p T^{2} \) |
| 13 | \( 1 + 4 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + 8 T + p T^{2} \) |
| 31 | \( 1 - 2 T + p T^{2} \) |
| 37 | \( 1 + 8 T + p T^{2} \) |
| 41 | \( 1 + 2 T + p T^{2} \) |
| 43 | \( 1 + p T^{2} \) |
| 47 | \( 1 + 2 T + p T^{2} \) |
| 53 | \( 1 + 8 T + p T^{2} \) |
| 59 | \( 1 + 8 T + p T^{2} \) |
| 61 | \( 1 + 10 T + p T^{2} \) |
| 67 | \( 1 - 4 T + p T^{2} \) |
| 71 | \( 1 - 12 T + p T^{2} \) |
| 73 | \( 1 - 2 T + p T^{2} \) |
| 79 | \( 1 - 12 T + p T^{2} \) |
| 83 | \( 1 + 12 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 - 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.77405140008410413396307089869, −7.30341334414927105865998253225, −6.56323080787751494961131248718, −5.43269908617481896137519467951, −5.06592134282209416865234928032, −4.21331554922085004325056104745, −3.19000585829499411507885393706, −1.98496495901403824623777876977, −1.27927393791234554738428894449, 0,
1.27927393791234554738428894449, 1.98496495901403824623777876977, 3.19000585829499411507885393706, 4.21331554922085004325056104745, 5.06592134282209416865234928032, 5.43269908617481896137519467951, 6.56323080787751494961131248718, 7.30341334414927105865998253225, 7.77405140008410413396307089869