Properties

Label 2-5610-1.1-c1-0-15
Degree $2$
Conductor $5610$
Sign $1$
Analytic cond. $44.7960$
Root an. cond. $6.69298$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s − 7-s + 8-s + 9-s − 10-s − 11-s − 12-s + 4·13-s − 14-s + 15-s + 16-s − 17-s + 18-s − 8·19-s − 20-s + 21-s − 22-s + 23-s − 24-s + 25-s + 4·26-s − 27-s − 28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.301·11-s − 0.288·12-s + 1.10·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s − 0.242·17-s + 0.235·18-s − 1.83·19-s − 0.223·20-s + 0.218·21-s − 0.213·22-s + 0.208·23-s − 0.204·24-s + 1/5·25-s + 0.784·26-s − 0.192·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5610\)    =    \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 17\)
Sign: $1$
Analytic conductor: \(44.7960\)
Root analytic conductor: \(6.69298\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5610,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.022035273\)
\(L(\frac12)\) \(\approx\) \(2.022035273\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 + T \)
11 \( 1 + T \)
17 \( 1 + T \)
good7 \( 1 + T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 - T + p T^{2} \)
29 \( 1 + T + p T^{2} \)
31 \( 1 - 9 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 8 T + p T^{2} \)
59 \( 1 - 10 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 4 T + p T^{2} \)
97 \( 1 + T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.206418615629988775932958968851, −7.18318748222732820333348696561, −6.44546051559169101255369290994, −6.15020782939261192733286789785, −5.21204120411131401721682589408, −4.40134301133376564621962673951, −3.89758444183897682946919854314, −2.96291922435264026628652471913, −1.98151717703258847344169602421, −0.69239728879348851881015339046, 0.69239728879348851881015339046, 1.98151717703258847344169602421, 2.96291922435264026628652471913, 3.89758444183897682946919854314, 4.40134301133376564621962673951, 5.21204120411131401721682589408, 6.15020782939261192733286789785, 6.44546051559169101255369290994, 7.18318748222732820333348696561, 8.206418615629988775932958968851

Graph of the $Z$-function along the critical line