L(s) = 1 | + 2-s − 3-s + 4-s − 5-s − 6-s − 7-s + 8-s + 9-s − 10-s − 11-s − 12-s + 4·13-s − 14-s + 15-s + 16-s − 17-s + 18-s − 8·19-s − 20-s + 21-s − 22-s + 23-s − 24-s + 25-s + 4·26-s − 27-s − 28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.301·11-s − 0.288·12-s + 1.10·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s − 0.242·17-s + 0.235·18-s − 1.83·19-s − 0.223·20-s + 0.218·21-s − 0.213·22-s + 0.208·23-s − 0.204·24-s + 1/5·25-s + 0.784·26-s − 0.192·27-s − 0.188·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.022035273\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.022035273\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 + T \) |
| 11 | \( 1 + T \) |
| 17 | \( 1 + T \) |
good | 7 | \( 1 + T + p T^{2} \) |
| 13 | \( 1 - 4 T + p T^{2} \) |
| 19 | \( 1 + 8 T + p T^{2} \) |
| 23 | \( 1 - T + p T^{2} \) |
| 29 | \( 1 + T + p T^{2} \) |
| 31 | \( 1 - 9 T + p T^{2} \) |
| 37 | \( 1 + 2 T + p T^{2} \) |
| 41 | \( 1 - 8 T + p T^{2} \) |
| 43 | \( 1 - T + p T^{2} \) |
| 47 | \( 1 + 8 T + p T^{2} \) |
| 53 | \( 1 - 8 T + p T^{2} \) |
| 59 | \( 1 - 10 T + p T^{2} \) |
| 61 | \( 1 + 2 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 - 6 T + p T^{2} \) |
| 73 | \( 1 - 14 T + p T^{2} \) |
| 79 | \( 1 + p T^{2} \) |
| 83 | \( 1 + 4 T + p T^{2} \) |
| 89 | \( 1 + 4 T + p T^{2} \) |
| 97 | \( 1 + T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.206418615629988775932958968851, −7.18318748222732820333348696561, −6.44546051559169101255369290994, −6.15020782939261192733286789785, −5.21204120411131401721682589408, −4.40134301133376564621962673951, −3.89758444183897682946919854314, −2.96291922435264026628652471913, −1.98151717703258847344169602421, −0.69239728879348851881015339046,
0.69239728879348851881015339046, 1.98151717703258847344169602421, 2.96291922435264026628652471913, 3.89758444183897682946919854314, 4.40134301133376564621962673951, 5.21204120411131401721682589408, 6.15020782939261192733286789785, 6.44546051559169101255369290994, 7.18318748222732820333348696561, 8.206418615629988775932958968851