Properties

Label 2-560-1.1-c1-0-9
Degree $2$
Conductor $560$
Sign $1$
Analytic cond. $4.47162$
Root an. cond. $2.11462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 5-s − 7-s + 6·9-s + 5·11-s − 5·13-s + 3·15-s − 7·17-s + 2·19-s − 3·21-s + 2·23-s + 25-s + 9·27-s + 7·29-s − 4·31-s + 15·33-s − 35-s − 6·37-s − 15·39-s − 12·41-s + 2·43-s + 6·45-s − 47-s + 49-s − 21·51-s + 5·55-s + 6·57-s + ⋯
L(s)  = 1  + 1.73·3-s + 0.447·5-s − 0.377·7-s + 2·9-s + 1.50·11-s − 1.38·13-s + 0.774·15-s − 1.69·17-s + 0.458·19-s − 0.654·21-s + 0.417·23-s + 1/5·25-s + 1.73·27-s + 1.29·29-s − 0.718·31-s + 2.61·33-s − 0.169·35-s − 0.986·37-s − 2.40·39-s − 1.87·41-s + 0.304·43-s + 0.894·45-s − 0.145·47-s + 1/7·49-s − 2.94·51-s + 0.674·55-s + 0.794·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(560\)    =    \(2^{4} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(4.47162\)
Root analytic conductor: \(2.11462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 560,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.643691978\)
\(L(\frac12)\) \(\approx\) \(2.643691978\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
7 \( 1 + T \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 3 T + p T^{2} \) 1.79.ad
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.40941159615388893250715508557, −9.543008020385817793332482027366, −9.086197799545514749819743984163, −8.375269634382673437491035425421, −7.07941858965721271749848204581, −6.67578280443386247224047726882, −4.88153619134139118802581016378, −3.84750334932192632607855993535, −2.79102468168229631071339860625, −1.80180608530670977304934504851, 1.80180608530670977304934504851, 2.79102468168229631071339860625, 3.84750334932192632607855993535, 4.88153619134139118802581016378, 6.67578280443386247224047726882, 7.07941858965721271749848204581, 8.375269634382673437491035425421, 9.086197799545514749819743984163, 9.543008020385817793332482027366, 10.40941159615388893250715508557

Graph of the $Z$-function along the critical line