| L(s) = 1 | + (−1 − i)2-s + 2.44i·3-s + 2i·4-s + 2.44·5-s + (2.44 − 2.44i)6-s + (−2.44 − i)7-s + (2 − 2i)8-s − 2.99·9-s + (−2.44 − 2.44i)10-s + 2·11-s − 4.89·12-s − 2.44·13-s + (1.44 + 3.44i)14-s + 5.99i·15-s − 4·16-s − 4.89i·17-s + ⋯ |
| L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.41i·3-s + i·4-s + 1.09·5-s + (0.999 − 0.999i)6-s + (−0.925 − 0.377i)7-s + (0.707 − 0.707i)8-s − 0.999·9-s + (−0.774 − 0.774i)10-s + 0.603·11-s − 1.41·12-s − 0.679·13-s + (0.387 + 0.921i)14-s + 1.54i·15-s − 16-s − 1.18i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.921 - 0.387i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.921 - 0.387i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.663048 + 0.133647i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.663048 + 0.133647i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (1 + i)T \) |
| 7 | \( 1 + (2.44 + i)T \) |
| good | 3 | \( 1 - 2.44iT - 3T^{2} \) |
| 5 | \( 1 - 2.44T + 5T^{2} \) |
| 11 | \( 1 - 2T + 11T^{2} \) |
| 13 | \( 1 + 2.44T + 13T^{2} \) |
| 17 | \( 1 + 4.89iT - 17T^{2} \) |
| 19 | \( 1 + 2.44iT - 19T^{2} \) |
| 23 | \( 1 + 4iT - 23T^{2} \) |
| 29 | \( 1 - 4iT - 29T^{2} \) |
| 31 | \( 1 - 4.89T + 31T^{2} \) |
| 37 | \( 1 - 8iT - 37T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + 6T + 43T^{2} \) |
| 47 | \( 1 + 4.89T + 47T^{2} \) |
| 53 | \( 1 + 4iT - 53T^{2} \) |
| 59 | \( 1 + 2.44iT - 59T^{2} \) |
| 61 | \( 1 + 7.34T + 61T^{2} \) |
| 67 | \( 1 + 2T + 67T^{2} \) |
| 71 | \( 1 - 10iT - 71T^{2} \) |
| 73 | \( 1 - 14.6iT - 73T^{2} \) |
| 79 | \( 1 + 6iT - 79T^{2} \) |
| 83 | \( 1 - 2.44iT - 83T^{2} \) |
| 89 | \( 1 + 14.6iT - 89T^{2} \) |
| 97 | \( 1 + 4.89iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.71139716301795103182580458437, −14.18016073769462053272801153769, −13.05187881440594372745787453448, −11.59234796763125983740622182117, −10.19320327450609072983773264087, −9.809691152486119517803241295809, −8.944406995191295677098499948995, −6.77502625487572142392429167873, −4.69890912599202400122281514675, −3.02359056856572027054513349814,
1.89198746771187162038117391700, 5.88953540509910196551585205691, 6.50144943066760156297205247485, 7.79291351632568902133719206267, 9.203458247507367328718954086447, 10.16690116372717326804670333419, 12.04582241795520484651057415173, 13.17888468152953520332413681531, 13.99854981557860414600959468955, 15.19909128324404508440629829222