Properties

Label 2-56-56.13-c8-0-50
Degree $2$
Conductor $56$
Sign $1$
Analytic cond. $22.8132$
Root an. cond. $4.77631$
Motivic weight $8$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·2-s + 62·3-s + 256·4-s + 766·5-s + 992·6-s + 2.40e3·7-s + 4.09e3·8-s − 2.71e3·9-s + 1.22e4·10-s + 1.58e4·12-s − 3.89e4·13-s + 3.84e4·14-s + 4.74e4·15-s + 6.55e4·16-s − 4.34e4·18-s − 1.61e5·19-s + 1.96e5·20-s + 1.48e5·21-s + 3.58e5·23-s + 2.53e5·24-s + 1.96e5·25-s − 6.23e5·26-s − 5.75e5·27-s + 6.14e5·28-s + 7.59e5·30-s + 1.04e6·32-s + 1.83e6·35-s + ⋯
L(s)  = 1  + 2-s + 0.765·3-s + 4-s + 1.22·5-s + 0.765·6-s + 7-s + 8-s − 0.414·9-s + 1.22·10-s + 0.765·12-s − 1.36·13-s + 14-s + 0.938·15-s + 16-s − 0.414·18-s − 1.24·19-s + 1.22·20-s + 0.765·21-s + 1.27·23-s + 0.765·24-s + 0.502·25-s − 1.36·26-s − 1.08·27-s + 28-s + 0.938·30-s + 32-s + 1.22·35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(56\)    =    \(2^{3} \cdot 7\)
Sign: $1$
Analytic conductor: \(22.8132\)
Root analytic conductor: \(4.77631\)
Motivic weight: \(8\)
Rational: yes
Arithmetic: yes
Character: $\chi_{56} (13, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 56,\ (\ :4),\ 1)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(5.785940967\)
\(L(\frac12)\) \(\approx\) \(5.785940967\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{4} T \)
7 \( 1 - p^{4} T \)
good3 \( 1 - 62 T + p^{8} T^{2} \)
5 \( 1 - 766 T + p^{8} T^{2} \)
11 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
13 \( 1 + 38978 T + p^{8} T^{2} \)
17 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
19 \( 1 + 161858 T + p^{8} T^{2} \)
23 \( 1 - 358082 T + p^{8} T^{2} \)
29 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
31 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
37 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
41 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
43 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
47 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
53 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
59 \( 1 - 22957822 T + p^{8} T^{2} \)
61 \( 1 + 26625218 T + p^{8} T^{2} \)
67 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
71 \( 1 + 46751038 T + p^{8} T^{2} \)
73 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
79 \( 1 + 58381438 T + p^{8} T^{2} \)
83 \( 1 + 77480258 T + p^{8} T^{2} \)
89 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
97 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.74168986895726530515566898096, −12.75604625425718619504707387921, −11.39524997824341770934129761073, −10.16279317330891742242918733222, −8.726181637610927335618826706564, −7.30596877661658962010608481232, −5.77508863671967657414185612013, −4.65267654783670375764485658090, −2.73007466738412520546643980057, −1.84909782938458667028205801630, 1.84909782938458667028205801630, 2.73007466738412520546643980057, 4.65267654783670375764485658090, 5.77508863671967657414185612013, 7.30596877661658962010608481232, 8.726181637610927335618826706564, 10.16279317330891742242918733222, 11.39524997824341770934129761073, 12.75604625425718619504707387921, 13.74168986895726530515566898096

Graph of the $Z$-function along the critical line