Properties

Label 2-56-56.13-c4-0-14
Degree $2$
Conductor $56$
Sign $1$
Analytic cond. $5.78871$
Root an. cond. $2.40597$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 10·3-s + 16·4-s + 22·5-s − 40·6-s + 49·7-s + 64·8-s + 19·9-s + 88·10-s − 160·12-s + 310·13-s + 196·14-s − 220·15-s + 256·16-s + 76·18-s − 650·19-s + 352·20-s − 490·21-s − 958·23-s − 640·24-s − 141·25-s + 1.24e3·26-s + 620·27-s + 784·28-s − 880·30-s + 1.02e3·32-s + 1.07e3·35-s + ⋯
L(s)  = 1  + 2-s − 1.11·3-s + 4-s + 0.879·5-s − 1.11·6-s + 7-s + 8-s + 0.234·9-s + 0.879·10-s − 1.11·12-s + 1.83·13-s + 14-s − 0.977·15-s + 16-s + 0.234·18-s − 1.80·19-s + 0.879·20-s − 1.11·21-s − 1.81·23-s − 1.11·24-s − 0.225·25-s + 1.83·26-s + 0.850·27-s + 28-s − 0.977·30-s + 32-s + 0.879·35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(56\)    =    \(2^{3} \cdot 7\)
Sign: $1$
Analytic conductor: \(5.78871\)
Root analytic conductor: \(2.40597\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: $\chi_{56} (13, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 56,\ (\ :2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(2.497420144\)
\(L(\frac12)\) \(\approx\) \(2.497420144\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{2} T \)
7 \( 1 - p^{2} T \)
good3 \( 1 + 10 T + p^{4} T^{2} \)
5 \( 1 - 22 T + p^{4} T^{2} \)
11 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
13 \( 1 - 310 T + p^{4} T^{2} \)
17 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
19 \( 1 + 650 T + p^{4} T^{2} \)
23 \( 1 + 958 T + p^{4} T^{2} \)
29 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
31 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
37 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
41 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
43 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
47 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
53 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
59 \( 1 + 1130 T + p^{4} T^{2} \)
61 \( 1 + 7370 T + p^{4} T^{2} \)
67 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
71 \( 1 - 2018 T + p^{4} T^{2} \)
73 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
79 \( 1 - 4418 T + p^{4} T^{2} \)
83 \( 1 + 13130 T + p^{4} T^{2} \)
89 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
97 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.27027376408173576877041649052, −13.44882670381341517012043293786, −12.20380492557216170445531027422, −11.14977169147526628448540228431, −10.50187894850507326552391848994, −8.304588267827272361328028219710, −6.29612067724508244030814750116, −5.75858155481941668785050054566, −4.28546742263887474345422848360, −1.76978317574464188161100406240, 1.76978317574464188161100406240, 4.28546742263887474345422848360, 5.75858155481941668785050054566, 6.29612067724508244030814750116, 8.304588267827272361328028219710, 10.50187894850507326552391848994, 11.14977169147526628448540228431, 12.20380492557216170445531027422, 13.44882670381341517012043293786, 14.27027376408173576877041649052

Graph of the $Z$-function along the critical line