L(s) = 1 | + 2.15·2-s + 3-s + 2.65·4-s − 0.710·5-s + 2.15·6-s − 2.30·7-s + 1.41·8-s + 9-s − 1.53·10-s − 11-s + 2.65·12-s − 4.98·14-s − 0.710·15-s − 2.26·16-s − 6.68·17-s + 2.15·18-s + 0.242·19-s − 1.88·20-s − 2.30·21-s − 2.15·22-s + 9.53·23-s + 1.41·24-s − 4.49·25-s + 27-s − 6.13·28-s − 2.95·29-s − 1.53·30-s + ⋯ |
L(s) = 1 | + 1.52·2-s + 0.577·3-s + 1.32·4-s − 0.317·5-s + 0.880·6-s − 0.872·7-s + 0.499·8-s + 0.333·9-s − 0.484·10-s − 0.301·11-s + 0.766·12-s − 1.33·14-s − 0.183·15-s − 0.565·16-s − 1.62·17-s + 0.508·18-s + 0.0556·19-s − 0.421·20-s − 0.504·21-s − 0.459·22-s + 1.98·23-s + 0.288·24-s − 0.899·25-s + 0.192·27-s − 1.15·28-s − 0.548·29-s − 0.279·30-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5577 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5577 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 11 | \( 1 + T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 - 2.15T + 2T^{2} \) |
| 5 | \( 1 + 0.710T + 5T^{2} \) |
| 7 | \( 1 + 2.30T + 7T^{2} \) |
| 17 | \( 1 + 6.68T + 17T^{2} \) |
| 19 | \( 1 - 0.242T + 19T^{2} \) |
| 23 | \( 1 - 9.53T + 23T^{2} \) |
| 29 | \( 1 + 2.95T + 29T^{2} \) |
| 31 | \( 1 - 4.02T + 31T^{2} \) |
| 37 | \( 1 + 3.42T + 37T^{2} \) |
| 41 | \( 1 + 9.46T + 41T^{2} \) |
| 43 | \( 1 + 11.8T + 43T^{2} \) |
| 47 | \( 1 - 12.9T + 47T^{2} \) |
| 53 | \( 1 - 6.78T + 53T^{2} \) |
| 59 | \( 1 + 7.81T + 59T^{2} \) |
| 61 | \( 1 - 0.910T + 61T^{2} \) |
| 67 | \( 1 + 9.32T + 67T^{2} \) |
| 71 | \( 1 + 12.9T + 71T^{2} \) |
| 73 | \( 1 + 8.51T + 73T^{2} \) |
| 79 | \( 1 - 1.82T + 79T^{2} \) |
| 83 | \( 1 + 4.64T + 83T^{2} \) |
| 89 | \( 1 + 14.7T + 89T^{2} \) |
| 97 | \( 1 + 1.86T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.41606962256789805074237053369, −6.92807405399814705726814142562, −6.33632594672193280384476223750, −5.47592198797950741700270486977, −4.70028501042736615707500824121, −4.12008273481673944453548212428, −3.24023713438942321790912897443, −2.85814861412478761648171002941, −1.84441975559563422547491155623, 0,
1.84441975559563422547491155623, 2.85814861412478761648171002941, 3.24023713438942321790912897443, 4.12008273481673944453548212428, 4.70028501042736615707500824121, 5.47592198797950741700270486977, 6.33632594672193280384476223750, 6.92807405399814705726814142562, 7.41606962256789805074237053369