Properties

Label 2-552-184.85-c1-0-17
Degree $2$
Conductor $552$
Sign $-0.893 - 0.448i$
Analytic cond. $4.40774$
Root an. cond. $2.09946$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.24 + 0.661i)2-s + (0.540 + 0.841i)3-s + (1.12 + 1.65i)4-s + (−2.21 + 1.01i)5-s + (0.118 + 1.40i)6-s + (−3.93 + 1.15i)7-s + (0.309 + 2.81i)8-s + (−0.415 + 0.909i)9-s + (−3.43 − 0.201i)10-s + (1.69 − 1.46i)11-s + (−0.784 + 1.83i)12-s + (0.366 − 1.24i)13-s + (−5.68 − 1.16i)14-s + (−2.04 − 1.31i)15-s + (−1.47 + 3.71i)16-s + (−0.326 + 2.27i)17-s + ⋯
L(s)  = 1  + (0.883 + 0.468i)2-s + (0.312 + 0.485i)3-s + (0.561 + 0.827i)4-s + (−0.989 + 0.451i)5-s + (0.0485 + 0.575i)6-s + (−1.48 + 0.436i)7-s + (0.109 + 0.993i)8-s + (−0.138 + 0.303i)9-s + (−1.08 − 0.0637i)10-s + (0.510 − 0.442i)11-s + (−0.226 + 0.531i)12-s + (0.101 − 0.346i)13-s + (−1.51 − 0.310i)14-s + (−0.528 − 0.339i)15-s + (−0.368 + 0.929i)16-s + (−0.0792 + 0.551i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.893 - 0.448i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.893 - 0.448i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(552\)    =    \(2^{3} \cdot 3 \cdot 23\)
Sign: $-0.893 - 0.448i$
Analytic conductor: \(4.40774\)
Root analytic conductor: \(2.09946\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{552} (85, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 552,\ (\ :1/2),\ -0.893 - 0.448i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.397787 + 1.68145i\)
\(L(\frac12)\) \(\approx\) \(0.397787 + 1.68145i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.24 - 0.661i)T \)
3 \( 1 + (-0.540 - 0.841i)T \)
23 \( 1 + (4.34 - 2.03i)T \)
good5 \( 1 + (2.21 - 1.01i)T + (3.27 - 3.77i)T^{2} \)
7 \( 1 + (3.93 - 1.15i)T + (5.88 - 3.78i)T^{2} \)
11 \( 1 + (-1.69 + 1.46i)T + (1.56 - 10.8i)T^{2} \)
13 \( 1 + (-0.366 + 1.24i)T + (-10.9 - 7.02i)T^{2} \)
17 \( 1 + (0.326 - 2.27i)T + (-16.3 - 4.78i)T^{2} \)
19 \( 1 + (-3.05 + 0.439i)T + (18.2 - 5.35i)T^{2} \)
29 \( 1 + (-6.81 - 0.979i)T + (27.8 + 8.17i)T^{2} \)
31 \( 1 + (-0.892 - 0.573i)T + (12.8 + 28.1i)T^{2} \)
37 \( 1 + (1.62 + 0.744i)T + (24.2 + 27.9i)T^{2} \)
41 \( 1 + (-4.91 - 10.7i)T + (-26.8 + 30.9i)T^{2} \)
43 \( 1 + (-1.53 - 2.39i)T + (-17.8 + 39.1i)T^{2} \)
47 \( 1 - 9.60T + 47T^{2} \)
53 \( 1 + (-2.57 - 8.76i)T + (-44.5 + 28.6i)T^{2} \)
59 \( 1 + (-2.65 + 9.03i)T + (-49.6 - 31.8i)T^{2} \)
61 \( 1 + (-3.08 + 4.79i)T + (-25.3 - 55.4i)T^{2} \)
67 \( 1 + (3.69 + 3.20i)T + (9.53 + 66.3i)T^{2} \)
71 \( 1 + (3.08 - 3.55i)T + (-10.1 - 70.2i)T^{2} \)
73 \( 1 + (1.00 + 6.96i)T + (-70.0 + 20.5i)T^{2} \)
79 \( 1 + (2.34 + 0.687i)T + (66.4 + 42.7i)T^{2} \)
83 \( 1 + (6.16 + 2.81i)T + (54.3 + 62.7i)T^{2} \)
89 \( 1 + (-0.684 + 0.439i)T + (36.9 - 80.9i)T^{2} \)
97 \( 1 + (3.23 + 7.08i)T + (-63.5 + 73.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.37259745800773754865567091219, −10.36339668591292995073595787752, −9.318402348061372999598032925324, −8.335019951214525383154119128934, −7.48405059524863325804137518500, −6.45861616167679058742124593800, −5.77047696879847078035807673432, −4.32149725682443746055283743645, −3.46189249004792853220735082170, −2.88348469004561249799814608692, 0.71693307572177405166914394180, 2.55110508459223540682025073412, 3.72398842905308549998913167971, 4.30123442957002529672549695030, 5.79853342950648381359344527250, 6.82085196247200538043342028221, 7.36037837354581801259957576770, 8.734454702597261040603304212351, 9.692253201462797688352466092207, 10.43523081533737120629302423082

Graph of the $Z$-function along the critical line