Properties

Label 2-552-184.101-c1-0-40
Degree $2$
Conductor $552$
Sign $0.478 + 0.878i$
Analytic cond. $4.40774$
Root an. cond. $2.09946$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.29 − 0.566i)2-s + (0.755 − 0.654i)3-s + (1.35 − 1.46i)4-s + (0.907 − 0.130i)5-s + (0.608 − 1.27i)6-s + (−1.67 + 3.67i)7-s + (0.927 − 2.67i)8-s + (0.142 − 0.989i)9-s + (1.10 − 0.682i)10-s + (1.75 − 5.96i)11-s + (0.0645 − 1.99i)12-s + (−0.258 + 0.117i)13-s + (−0.0922 + 5.71i)14-s + (0.600 − 0.692i)15-s + (−0.312 − 3.98i)16-s + (3.14 + 2.02i)17-s + ⋯
L(s)  = 1  + (0.916 − 0.400i)2-s + (0.436 − 0.378i)3-s + (0.678 − 0.734i)4-s + (0.405 − 0.0583i)5-s + (0.248 − 0.521i)6-s + (−0.634 + 1.39i)7-s + (0.327 − 0.944i)8-s + (0.0474 − 0.329i)9-s + (0.348 − 0.215i)10-s + (0.527 − 1.79i)11-s + (0.0186 − 0.577i)12-s + (−0.0716 + 0.0327i)13-s + (−0.0246 + 1.52i)14-s + (0.154 − 0.178i)15-s + (−0.0782 − 0.996i)16-s + (0.762 + 0.490i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.478 + 0.878i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.478 + 0.878i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(552\)    =    \(2^{3} \cdot 3 \cdot 23\)
Sign: $0.478 + 0.878i$
Analytic conductor: \(4.40774\)
Root analytic conductor: \(2.09946\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{552} (469, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 552,\ (\ :1/2),\ 0.478 + 0.878i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.51540 - 1.49367i\)
\(L(\frac12)\) \(\approx\) \(2.51540 - 1.49367i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.29 + 0.566i)T \)
3 \( 1 + (-0.755 + 0.654i)T \)
23 \( 1 + (-4.60 + 1.34i)T \)
good5 \( 1 + (-0.907 + 0.130i)T + (4.79 - 1.40i)T^{2} \)
7 \( 1 + (1.67 - 3.67i)T + (-4.58 - 5.29i)T^{2} \)
11 \( 1 + (-1.75 + 5.96i)T + (-9.25 - 5.94i)T^{2} \)
13 \( 1 + (0.258 - 0.117i)T + (8.51 - 9.82i)T^{2} \)
17 \( 1 + (-3.14 - 2.02i)T + (7.06 + 15.4i)T^{2} \)
19 \( 1 + (0.0815 + 0.126i)T + (-7.89 + 17.2i)T^{2} \)
29 \( 1 + (4.40 - 6.85i)T + (-12.0 - 26.3i)T^{2} \)
31 \( 1 + (0.844 - 0.974i)T + (-4.41 - 30.6i)T^{2} \)
37 \( 1 + (-3.53 - 0.507i)T + (35.5 + 10.4i)T^{2} \)
41 \( 1 + (-1.27 - 8.85i)T + (-39.3 + 11.5i)T^{2} \)
43 \( 1 + (4.63 - 4.01i)T + (6.11 - 42.5i)T^{2} \)
47 \( 1 + 11.3T + 47T^{2} \)
53 \( 1 + (2.73 + 1.24i)T + (34.7 + 40.0i)T^{2} \)
59 \( 1 + (13.0 - 5.95i)T + (38.6 - 44.5i)T^{2} \)
61 \( 1 + (-8.58 - 7.43i)T + (8.68 + 60.3i)T^{2} \)
67 \( 1 + (2.35 + 8.01i)T + (-56.3 + 36.2i)T^{2} \)
71 \( 1 + (-8.58 + 2.52i)T + (59.7 - 38.3i)T^{2} \)
73 \( 1 + (-2.88 + 1.85i)T + (30.3 - 66.4i)T^{2} \)
79 \( 1 + (0.819 + 1.79i)T + (-51.7 + 59.7i)T^{2} \)
83 \( 1 + (-14.2 - 2.05i)T + (79.6 + 23.3i)T^{2} \)
89 \( 1 + (-4.87 - 5.62i)T + (-12.6 + 88.0i)T^{2} \)
97 \( 1 + (1.04 + 7.28i)T + (-93.0 + 27.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.93671844576405132966342648683, −9.637380193654828732868245300865, −9.053523641352326273597656741381, −8.036439674241063578743077048181, −6.52361554836659845195042689632, −6.01432237822728074505874062111, −5.19652545260933670529618422734, −3.44517752178212133018282099393, −2.92883311584019497789130203173, −1.50153994282280404982587745222, 2.03622027102785543829018473452, 3.48168493795858217030866875272, 4.21612469907478285979098482270, 5.16301873834562791139439740860, 6.49032725907424845317273930970, 7.24880122813006329582679636975, 7.84433682641454475635520101507, 9.520485895674834216352694184625, 9.872617678708479355455989924246, 10.93028108504644137747875686901

Graph of the $Z$-function along the critical line