Properties

Label 2-552-184.101-c1-0-21
Degree $2$
Conductor $552$
Sign $0.737 + 0.675i$
Analytic cond. $4.40774$
Root an. cond. $2.09946$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.485 − 1.32i)2-s + (−0.755 + 0.654i)3-s + (−1.52 + 1.28i)4-s + (3.17 − 0.456i)5-s + (1.23 + 0.686i)6-s + (0.698 − 1.52i)7-s + (2.45 + 1.40i)8-s + (0.142 − 0.989i)9-s + (−2.14 − 3.99i)10-s + (−0.964 + 3.28i)11-s + (0.311 − 1.97i)12-s + (1.14 − 0.520i)13-s + (−2.36 − 0.185i)14-s + (−2.10 + 2.42i)15-s + (0.676 − 3.94i)16-s + (−2.77 − 1.78i)17-s + ⋯
L(s)  = 1  + (−0.343 − 0.939i)2-s + (−0.436 + 0.378i)3-s + (−0.764 + 0.644i)4-s + (1.42 − 0.204i)5-s + (0.504 + 0.280i)6-s + (0.263 − 0.577i)7-s + (0.867 + 0.497i)8-s + (0.0474 − 0.329i)9-s + (−0.679 − 1.26i)10-s + (−0.290 + 0.990i)11-s + (0.0899 − 0.570i)12-s + (0.316 − 0.144i)13-s + (−0.633 − 0.0496i)14-s + (−0.542 + 0.626i)15-s + (0.169 − 0.985i)16-s + (−0.673 − 0.433i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.737 + 0.675i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.737 + 0.675i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(552\)    =    \(2^{3} \cdot 3 \cdot 23\)
Sign: $0.737 + 0.675i$
Analytic conductor: \(4.40774\)
Root analytic conductor: \(2.09946\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{552} (469, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 552,\ (\ :1/2),\ 0.737 + 0.675i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.22370 - 0.475765i\)
\(L(\frac12)\) \(\approx\) \(1.22370 - 0.475765i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.485 + 1.32i)T \)
3 \( 1 + (0.755 - 0.654i)T \)
23 \( 1 + (-3.44 - 3.33i)T \)
good5 \( 1 + (-3.17 + 0.456i)T + (4.79 - 1.40i)T^{2} \)
7 \( 1 + (-0.698 + 1.52i)T + (-4.58 - 5.29i)T^{2} \)
11 \( 1 + (0.964 - 3.28i)T + (-9.25 - 5.94i)T^{2} \)
13 \( 1 + (-1.14 + 0.520i)T + (8.51 - 9.82i)T^{2} \)
17 \( 1 + (2.77 + 1.78i)T + (7.06 + 15.4i)T^{2} \)
19 \( 1 + (-4.60 - 7.16i)T + (-7.89 + 17.2i)T^{2} \)
29 \( 1 + (-4.16 + 6.48i)T + (-12.0 - 26.3i)T^{2} \)
31 \( 1 + (-5.68 + 6.55i)T + (-4.41 - 30.6i)T^{2} \)
37 \( 1 + (1.57 + 0.226i)T + (35.5 + 10.4i)T^{2} \)
41 \( 1 + (1.21 + 8.41i)T + (-39.3 + 11.5i)T^{2} \)
43 \( 1 + (2.77 - 2.40i)T + (6.11 - 42.5i)T^{2} \)
47 \( 1 + 6.51T + 47T^{2} \)
53 \( 1 + (-4.80 - 2.19i)T + (34.7 + 40.0i)T^{2} \)
59 \( 1 + (-10.4 + 4.78i)T + (38.6 - 44.5i)T^{2} \)
61 \( 1 + (-10.1 - 8.81i)T + (8.68 + 60.3i)T^{2} \)
67 \( 1 + (1.87 + 6.37i)T + (-56.3 + 36.2i)T^{2} \)
71 \( 1 + (11.8 - 3.47i)T + (59.7 - 38.3i)T^{2} \)
73 \( 1 + (-5.28 + 3.39i)T + (30.3 - 66.4i)T^{2} \)
79 \( 1 + (-0.798 - 1.74i)T + (-51.7 + 59.7i)T^{2} \)
83 \( 1 + (10.7 + 1.54i)T + (79.6 + 23.3i)T^{2} \)
89 \( 1 + (-2.00 - 2.31i)T + (-12.6 + 88.0i)T^{2} \)
97 \( 1 + (-0.127 - 0.883i)T + (-93.0 + 27.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.39050610944391260299419559122, −9.938647424055662459365945122721, −9.438121437940071954742074405643, −8.240821139438977302323521020080, −7.17357264665457912018953973917, −5.81251159008729351220788900975, −4.95694835223268741891205760487, −3.94431849663195825350507791994, −2.42466814269953186620589777529, −1.24870561248597637798987163139, 1.20628223876411496336097347615, 2.76171211402923985647126503316, 4.96927209167198657394268314637, 5.43248453649337294468573050720, 6.53043906424843940674847405998, 6.84685213510217471220575282958, 8.494376144559940931695999497852, 8.811965034977013909821655739950, 9.934881264205367383329976150622, 10.70653746646579371037515782084

Graph of the $Z$-function along the critical line