L(s) = 1 | − i·2-s + 3.37i·3-s − 4-s + 3.37·6-s + 3.37i·7-s + i·8-s − 8.37·9-s − 11-s − 3.37i·12-s − 2i·13-s + 3.37·14-s + 16-s + 1.37i·17-s + 8.37i·18-s − 0.627·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 1.94i·3-s − 0.5·4-s + 1.37·6-s + 1.27i·7-s + 0.353i·8-s − 2.79·9-s − 0.301·11-s − 0.973i·12-s − 0.554i·13-s + 0.901·14-s + 0.250·16-s + 0.332i·17-s + 1.97i·18-s − 0.144·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.203088 + 0.860297i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.203088 + 0.860297i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 11 | \( 1 + T \) |
good | 3 | \( 1 - 3.37iT - 3T^{2} \) |
| 7 | \( 1 - 3.37iT - 7T^{2} \) |
| 13 | \( 1 + 2iT - 13T^{2} \) |
| 17 | \( 1 - 1.37iT - 17T^{2} \) |
| 19 | \( 1 + 0.627T + 19T^{2} \) |
| 23 | \( 1 + 2.74iT - 23T^{2} \) |
| 29 | \( 1 + 1.37T + 29T^{2} \) |
| 31 | \( 1 - 3.37T + 31T^{2} \) |
| 37 | \( 1 - 9.37iT - 37T^{2} \) |
| 41 | \( 1 + 11.4T + 41T^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 - 2.74iT - 47T^{2} \) |
| 53 | \( 1 - 4.11iT - 53T^{2} \) |
| 59 | \( 1 - 2.74T + 59T^{2} \) |
| 61 | \( 1 + 5.37T + 61T^{2} \) |
| 67 | \( 1 - 8iT - 67T^{2} \) |
| 71 | \( 1 - 10.1T + 71T^{2} \) |
| 73 | \( 1 - 15.4iT - 73T^{2} \) |
| 79 | \( 1 - 1.25T + 79T^{2} \) |
| 83 | \( 1 - 2.74iT - 83T^{2} \) |
| 89 | \( 1 - 1.37T + 89T^{2} \) |
| 97 | \( 1 + 12.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.04902827698842324794549119004, −10.14750291407820377044346853101, −9.735846337696146963833564300828, −8.650983815026329647850826620367, −8.352127217857338524142016911424, −6.10644110922531971354816751195, −5.26322897283354987904118940913, −4.54581059174743706305447595745, −3.35163103565771022975707468936, −2.57061996064663028381270237007,
0.49767282219092026449500653311, 1.90194442575267211263859162824, 3.52911694542513406458220473280, 5.08918362404901425834331760323, 6.21181193432819989212695298680, 6.97763241348462825630126225871, 7.47323918995497605882606571381, 8.214659649000683756938393505544, 9.189823413623371348719690308983, 10.51945937914225155050407751508