Properties

Label 2-55-55.54-c12-0-40
Degree $2$
Conductor $55$
Sign $1$
Analytic cond. $50.2696$
Root an. cond. $7.09011$
Motivic weight $12$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 117·2-s + 9.59e3·4-s + 1.56e4·5-s − 8.72e4·7-s − 6.43e5·8-s + 5.31e5·9-s − 1.82e6·10-s + 1.77e6·11-s + 9.62e6·13-s + 1.02e7·14-s + 3.59e7·16-s + 3.57e7·17-s − 6.21e7·18-s + 1.49e8·20-s − 2.07e8·22-s + 2.44e8·25-s − 1.12e9·26-s − 8.37e8·28-s + 3.46e8·31-s − 1.57e9·32-s − 4.18e9·34-s − 1.36e9·35-s + 5.09e9·36-s − 1.00e10·40-s − 7.56e9·43-s + 1.69e10·44-s + 8.30e9·45-s + ⋯
L(s)  = 1  − 1.82·2-s + 2.34·4-s + 5-s − 0.741·7-s − 2.45·8-s + 9-s − 1.82·10-s + 11-s + 1.99·13-s + 1.35·14-s + 2.14·16-s + 1.48·17-s − 1.82·18-s + 2.34·20-s − 1.82·22-s + 25-s − 3.64·26-s − 1.73·28-s + 0.390·31-s − 1.46·32-s − 2.70·34-s − 0.741·35-s + 2.34·36-s − 2.45·40-s − 1.19·43-s + 2.34·44-s + 45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(13-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+6) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55\)    =    \(5 \cdot 11\)
Sign: $1$
Analytic conductor: \(50.2696\)
Root analytic conductor: \(7.09011\)
Motivic weight: \(12\)
Rational: yes
Arithmetic: yes
Character: $\chi_{55} (54, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 55,\ (\ :6),\ 1)\)

Particular Values

\(L(\frac{13}{2})\) \(\approx\) \(1.425996607\)
\(L(\frac12)\) \(\approx\) \(1.425996607\)
\(L(7)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - p^{6} T \)
11 \( 1 - p^{6} T \)
good2 \( 1 + 117 T + p^{12} T^{2} \)
3 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
7 \( 1 + 87282 T + p^{12} T^{2} \)
13 \( 1 - 9629118 T + p^{12} T^{2} \)
17 \( 1 - 35761518 T + p^{12} T^{2} \)
19 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
23 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
29 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
31 \( 1 - 346700482 T + p^{12} T^{2} \)
37 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
41 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
43 \( 1 + 7565541282 T + p^{12} T^{2} \)
47 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
53 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
59 \( 1 + 84345242798 T + p^{12} T^{2} \)
61 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
67 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
71 \( 1 - 240883653922 T + p^{12} T^{2} \)
73 \( 1 - 297569550798 T + p^{12} T^{2} \)
79 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
83 \( 1 + 579981676482 T + p^{12} T^{2} \)
89 \( 1 + 991704621598 T + p^{12} T^{2} \)
97 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.49508958983650476494352722986, −11.05308719070058572795757337376, −9.994663002935162214430857478235, −9.424088083440271636699166552526, −8.305514843770271162440566970127, −6.80858396647608582180258975616, −6.08946626516569082083404110778, −3.37615767557314882074441038295, −1.58286685038260409255782335399, −1.01463658497175101407862335232, 1.01463658497175101407862335232, 1.58286685038260409255782335399, 3.37615767557314882074441038295, 6.08946626516569082083404110778, 6.80858396647608582180258975616, 8.305514843770271162440566970127, 9.424088083440271636699166552526, 9.994663002935162214430857478235, 11.05308719070058572795757337376, 12.49508958983650476494352722986

Graph of the $Z$-function along the critical line