Properties

Label 2-55-55.4-c1-0-1
Degree $2$
Conductor $55$
Sign $0.165 - 0.986i$
Analytic cond. $0.439177$
Root an. cond. $0.662704$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.18 + 1.63i)2-s + (2.49 + 0.809i)3-s + (−0.647 − 1.99i)4-s + (−1.06 − 1.96i)5-s + (−4.29 + 3.11i)6-s + (−0.918 + 0.298i)7-s + (0.183 + 0.0595i)8-s + (3.12 + 2.27i)9-s + (4.48 + 0.596i)10-s + (−3.31 − 0.189i)11-s − 5.49i·12-s + (2.65 − 3.66i)13-s + (0.603 − 1.85i)14-s + (−1.05 − 5.76i)15-s + (3.07 − 2.23i)16-s + (1.96 + 2.69i)17-s + ⋯
L(s)  = 1  + (−0.841 + 1.15i)2-s + (1.43 + 0.467i)3-s + (−0.323 − 0.996i)4-s + (−0.475 − 0.879i)5-s + (−1.75 + 1.27i)6-s + (−0.347 + 0.112i)7-s + (0.0648 + 0.0210i)8-s + (1.04 + 0.757i)9-s + (1.41 + 0.188i)10-s + (−0.998 − 0.0572i)11-s − 1.58i·12-s + (0.737 − 1.01i)13-s + (0.161 − 0.496i)14-s + (−0.273 − 1.48i)15-s + (0.768 − 0.558i)16-s + (0.475 + 0.654i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.165 - 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.165 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55\)    =    \(5 \cdot 11\)
Sign: $0.165 - 0.986i$
Analytic conductor: \(0.439177\)
Root analytic conductor: \(0.662704\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{55} (4, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 55,\ (\ :1/2),\ 0.165 - 0.986i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.583541 + 0.494002i\)
\(L(\frac12)\) \(\approx\) \(0.583541 + 0.494002i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (1.06 + 1.96i)T \)
11 \( 1 + (3.31 + 0.189i)T \)
good2 \( 1 + (1.18 - 1.63i)T + (-0.618 - 1.90i)T^{2} \)
3 \( 1 + (-2.49 - 0.809i)T + (2.42 + 1.76i)T^{2} \)
7 \( 1 + (0.918 - 0.298i)T + (5.66 - 4.11i)T^{2} \)
13 \( 1 + (-2.65 + 3.66i)T + (-4.01 - 12.3i)T^{2} \)
17 \( 1 + (-1.96 - 2.69i)T + (-5.25 + 16.1i)T^{2} \)
19 \( 1 + (1.01 - 3.11i)T + (-15.3 - 11.1i)T^{2} \)
23 \( 1 - 3.36iT - 23T^{2} \)
29 \( 1 + (1.51 + 4.67i)T + (-23.4 + 17.0i)T^{2} \)
31 \( 1 + (-0.338 - 0.245i)T + (9.57 + 29.4i)T^{2} \)
37 \( 1 + (6.02 - 1.95i)T + (29.9 - 21.7i)T^{2} \)
41 \( 1 + (-1.78 + 5.50i)T + (-33.1 - 24.0i)T^{2} \)
43 \( 1 - 2.26iT - 43T^{2} \)
47 \( 1 + (-4.11 - 1.33i)T + (38.0 + 27.6i)T^{2} \)
53 \( 1 + (-1.56 + 2.15i)T + (-16.3 - 50.4i)T^{2} \)
59 \( 1 + (-3.12 - 9.62i)T + (-47.7 + 34.6i)T^{2} \)
61 \( 1 + (-1.99 + 1.45i)T + (18.8 - 58.0i)T^{2} \)
67 \( 1 + 9.60iT - 67T^{2} \)
71 \( 1 + (-4.41 + 3.20i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (-1.36 + 0.443i)T + (59.0 - 42.9i)T^{2} \)
79 \( 1 + (-0.812 - 0.590i)T + (24.4 + 75.1i)T^{2} \)
83 \( 1 + (-4.34 - 5.98i)T + (-25.6 + 78.9i)T^{2} \)
89 \( 1 - 12.1T + 89T^{2} \)
97 \( 1 + (1.77 - 2.44i)T + (-29.9 - 92.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.56368956306363230888694530463, −15.08921745037663025473397685524, −13.63508624430787702650555300269, −12.54218634428429383028976523166, −10.27038816039054357829891408256, −9.200559990752422418334326922741, −8.206177531762194020935148538762, −7.80922732749285349165895895751, −5.65542844797391750518735252175, −3.52100667783473373758984808484, 2.38542886778364778296386622240, 3.45951651040529274285335401266, 6.97020728612100557994528583837, 8.203689114729419381746865302283, 9.175516239455597525432949596451, 10.36057555976923378821189038422, 11.41411209975291139492389125918, 12.75734856227858303122986353351, 13.87328005387060458083857278056, 14.87227984177233887415333963265

Graph of the $Z$-function along the critical line