L(s) = 1 | + (−0.819 + 0.819i)2-s + (−2.25 + 2.25i)3-s + 30.6i·4-s + (5.74 − 55.6i)5-s − 3.69i·6-s + (−88.0 + 88.0i)7-s + (−51.3 − 51.3i)8-s + 232. i·9-s + (40.8 + 50.2i)10-s + (68.0 − 395. i)11-s + (−69.1 − 69.1i)12-s + (−741. − 741. i)13-s − 144. i·14-s + (112. + 138. i)15-s − 896.·16-s + (−805. + 805. i)17-s + ⋯ |
L(s) = 1 | + (−0.144 + 0.144i)2-s + (−0.144 + 0.144i)3-s + 0.957i·4-s + (0.102 − 0.994i)5-s − 0.0419i·6-s + (−0.679 + 0.679i)7-s + (−0.283 − 0.283i)8-s + 0.958i·9-s + (0.129 + 0.159i)10-s + (0.169 − 0.985i)11-s + (−0.138 − 0.138i)12-s + (−1.21 − 1.21i)13-s − 0.196i·14-s + (0.129 + 0.158i)15-s − 0.875·16-s + (−0.676 + 0.676i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.961 + 0.276i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.961 + 0.276i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.0264493 - 0.187577i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0264493 - 0.187577i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-5.74 + 55.6i)T \) |
| 11 | \( 1 + (-68.0 + 395. i)T \) |
good | 2 | \( 1 + (0.819 - 0.819i)T - 32iT^{2} \) |
| 3 | \( 1 + (2.25 - 2.25i)T - 243iT^{2} \) |
| 7 | \( 1 + (88.0 - 88.0i)T - 1.68e4iT^{2} \) |
| 13 | \( 1 + (741. + 741. i)T + 3.71e5iT^{2} \) |
| 17 | \( 1 + (805. - 805. i)T - 1.41e6iT^{2} \) |
| 19 | \( 1 + 1.85e3T + 2.47e6T^{2} \) |
| 23 | \( 1 + (561. - 561. i)T - 6.43e6iT^{2} \) |
| 29 | \( 1 - 3.98e3T + 2.05e7T^{2} \) |
| 31 | \( 1 - 4.01e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + (-5.64e3 - 5.64e3i)T + 6.93e7iT^{2} \) |
| 41 | \( 1 - 1.42e4iT - 1.15e8T^{2} \) |
| 43 | \( 1 + (-3.12e3 - 3.12e3i)T + 1.47e8iT^{2} \) |
| 47 | \( 1 + (1.84e4 + 1.84e4i)T + 2.29e8iT^{2} \) |
| 53 | \( 1 + (2.40e3 - 2.40e3i)T - 4.18e8iT^{2} \) |
| 59 | \( 1 - 2.28e4iT - 7.14e8T^{2} \) |
| 61 | \( 1 - 3.78e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 + (-5.68e3 - 5.68e3i)T + 1.35e9iT^{2} \) |
| 71 | \( 1 + 3.27e3T + 1.80e9T^{2} \) |
| 73 | \( 1 + (2.58e4 + 2.58e4i)T + 2.07e9iT^{2} \) |
| 79 | \( 1 - 4.13e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + (6.78e4 + 6.78e4i)T + 3.93e9iT^{2} \) |
| 89 | \( 1 + 8.65e4iT - 5.58e9T^{2} \) |
| 97 | \( 1 + (2.45e4 + 2.45e4i)T + 8.58e9iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.24241573446063007437666976109, −13.32503646263228648261462461668, −12.79363719978664665151077173529, −11.71686262743589927978632017160, −10.12358663225437473086886444661, −8.692828501328047002441157706770, −8.008266541557588076814027887052, −6.11042317784967262932971514106, −4.61367435308821549674070413295, −2.71606001028200481415376098471,
0.091784394914907296247827758224, 2.25892657862403954412163010807, 4.38393614582671776900263986046, 6.52501547364031307520393012923, 6.91059065965029127994163258163, 9.417598396425418390920324071145, 10.01117683908447520129605344734, 11.22428112493152648863397927051, 12.41509752573278471012143175044, 14.01174999047620513280946667744