Properties

Label 2-55-55.17-c1-0-1
Degree $2$
Conductor $55$
Sign $0.875 - 0.482i$
Analytic cond. $0.439177$
Root an. cond. $0.662704$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.30 + 0.665i)2-s + (−0.822 + 0.130i)3-s + (0.0875 + 0.120i)4-s + (−0.233 + 2.22i)5-s + (−1.16 − 0.377i)6-s + (0.659 − 4.16i)7-s + (−0.424 − 2.68i)8-s + (−2.19 + 0.712i)9-s + (−1.78 + 2.74i)10-s + (−0.920 + 3.18i)11-s + (−0.0877 − 0.0877i)12-s + (−0.420 + 0.824i)13-s + (3.63 − 4.99i)14-s + (−0.0979 − 1.85i)15-s + (1.32 − 4.06i)16-s + (0.875 + 1.71i)17-s + ⋯
L(s)  = 1  + (0.923 + 0.470i)2-s + (−0.474 + 0.0751i)3-s + (0.0437 + 0.0602i)4-s + (−0.104 + 0.994i)5-s + (−0.473 − 0.153i)6-s + (0.249 − 1.57i)7-s + (−0.150 − 0.947i)8-s + (−0.731 + 0.237i)9-s + (−0.564 + 0.869i)10-s + (−0.277 + 0.960i)11-s + (−0.0253 − 0.0253i)12-s + (−0.116 + 0.228i)13-s + (0.970 − 1.33i)14-s + (−0.0252 − 0.479i)15-s + (0.330 − 1.01i)16-s + (0.212 + 0.416i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.875 - 0.482i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.875 - 0.482i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55\)    =    \(5 \cdot 11\)
Sign: $0.875 - 0.482i$
Analytic conductor: \(0.439177\)
Root analytic conductor: \(0.662704\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{55} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 55,\ (\ :1/2),\ 0.875 - 0.482i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.02006 + 0.262680i\)
\(L(\frac12)\) \(\approx\) \(1.02006 + 0.262680i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (0.233 - 2.22i)T \)
11 \( 1 + (0.920 - 3.18i)T \)
good2 \( 1 + (-1.30 - 0.665i)T + (1.17 + 1.61i)T^{2} \)
3 \( 1 + (0.822 - 0.130i)T + (2.85 - 0.927i)T^{2} \)
7 \( 1 + (-0.659 + 4.16i)T + (-6.65 - 2.16i)T^{2} \)
13 \( 1 + (0.420 - 0.824i)T + (-7.64 - 10.5i)T^{2} \)
17 \( 1 + (-0.875 - 1.71i)T + (-9.99 + 13.7i)T^{2} \)
19 \( 1 + (-4.39 - 3.19i)T + (5.87 + 18.0i)T^{2} \)
23 \( 1 + (-1.95 + 1.95i)T - 23iT^{2} \)
29 \( 1 + (0.810 - 0.588i)T + (8.96 - 27.5i)T^{2} \)
31 \( 1 + (-0.131 - 0.403i)T + (-25.0 + 18.2i)T^{2} \)
37 \( 1 + (4.87 + 0.771i)T + (35.1 + 11.4i)T^{2} \)
41 \( 1 + (-0.339 + 0.467i)T + (-12.6 - 38.9i)T^{2} \)
43 \( 1 + (5.05 + 5.05i)T + 43iT^{2} \)
47 \( 1 + (0.186 + 1.17i)T + (-44.6 + 14.5i)T^{2} \)
53 \( 1 + (-8.09 - 4.12i)T + (31.1 + 42.8i)T^{2} \)
59 \( 1 + (5.47 + 7.53i)T + (-18.2 + 56.1i)T^{2} \)
61 \( 1 + (-7.40 - 2.40i)T + (49.3 + 35.8i)T^{2} \)
67 \( 1 + (3.05 + 3.05i)T + 67iT^{2} \)
71 \( 1 + (-2.65 + 8.17i)T + (-57.4 - 41.7i)T^{2} \)
73 \( 1 + (-5.39 - 0.854i)T + (69.4 + 22.5i)T^{2} \)
79 \( 1 + (-0.705 - 2.17i)T + (-63.9 + 46.4i)T^{2} \)
83 \( 1 + (-1.77 + 0.902i)T + (48.7 - 67.1i)T^{2} \)
89 \( 1 - 13.9iT - 89T^{2} \)
97 \( 1 + (-1.50 + 2.96i)T + (-57.0 - 78.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.09922149233619236586153809870, −14.24550948013309605291675894759, −13.63176426623090742931618503633, −12.14083744266960382832170610998, −10.75982640677870642877114052021, −10.01288863065667166949969980175, −7.57057373316167018024527225063, −6.63912850779153218725852455218, −5.15297678792335216523781939925, −3.74359637156638644456182840419, 2.98425097363403209050426868035, 5.15938250516688489393506567922, 5.64145158594276843712038188428, 8.305302708803490014798144703748, 9.100015532871975858153526619841, 11.46215002484084892703654440548, 11.80631839672516289205194383634, 12.82673055628188539560785855274, 13.84518969417529450072254444607, 15.13361516037120901191449174769

Graph of the $Z$-function along the critical line