Properties

Label 2-5488-1.1-c1-0-130
Degree $2$
Conductor $5488$
Sign $-1$
Analytic cond. $43.8219$
Root an. cond. $6.61981$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.445·3-s + 3.04·5-s − 2.80·9-s + 4.40·11-s − 5.71·13-s + 1.35·15-s − 7.54·17-s + 1.39·19-s − 7.18·23-s + 4.29·25-s − 2.58·27-s − 0.692·29-s + 7.13·31-s + 1.96·33-s + 1.66·37-s − 2.54·39-s − 0.506·41-s − 0.850·43-s − 8.54·45-s + 0.158·47-s − 3.35·51-s − 6.41·53-s + 13.4·55-s + 0.621·57-s − 10.9·59-s − 5.70·61-s − 17.4·65-s + ⋯
L(s)  = 1  + 0.256·3-s + 1.36·5-s − 0.933·9-s + 1.32·11-s − 1.58·13-s + 0.350·15-s − 1.82·17-s + 0.320·19-s − 1.49·23-s + 0.859·25-s − 0.496·27-s − 0.128·29-s + 1.28·31-s + 0.341·33-s + 0.273·37-s − 0.407·39-s − 0.0790·41-s − 0.129·43-s − 1.27·45-s + 0.0231·47-s − 0.470·51-s − 0.880·53-s + 1.81·55-s + 0.0822·57-s − 1.42·59-s − 0.730·61-s − 2.16·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5488\)    =    \(2^{4} \cdot 7^{3}\)
Sign: $-1$
Analytic conductor: \(43.8219\)
Root analytic conductor: \(6.61981\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5488,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 0.445T + 3T^{2} \)
5 \( 1 - 3.04T + 5T^{2} \)
11 \( 1 - 4.40T + 11T^{2} \)
13 \( 1 + 5.71T + 13T^{2} \)
17 \( 1 + 7.54T + 17T^{2} \)
19 \( 1 - 1.39T + 19T^{2} \)
23 \( 1 + 7.18T + 23T^{2} \)
29 \( 1 + 0.692T + 29T^{2} \)
31 \( 1 - 7.13T + 31T^{2} \)
37 \( 1 - 1.66T + 37T^{2} \)
41 \( 1 + 0.506T + 41T^{2} \)
43 \( 1 + 0.850T + 43T^{2} \)
47 \( 1 - 0.158T + 47T^{2} \)
53 \( 1 + 6.41T + 53T^{2} \)
59 \( 1 + 10.9T + 59T^{2} \)
61 \( 1 + 5.70T + 61T^{2} \)
67 \( 1 + 10.9T + 67T^{2} \)
71 \( 1 + 6.18T + 71T^{2} \)
73 \( 1 + 1.54T + 73T^{2} \)
79 \( 1 - 7.84T + 79T^{2} \)
83 \( 1 - 3.21T + 83T^{2} \)
89 \( 1 + 13.9T + 89T^{2} \)
97 \( 1 + 1.55T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.86904897167746791036834346593, −6.92637201332727030742439503808, −6.26212120081805298917044608026, −5.86919536855812167292018230283, −4.82532816452868473219782717228, −4.25904239691536144260976299444, −2.99694528760584080752432088679, −2.30839537727281054489422546421, −1.65096710036292790076220116616, 0, 1.65096710036292790076220116616, 2.30839537727281054489422546421, 2.99694528760584080752432088679, 4.25904239691536144260976299444, 4.82532816452868473219782717228, 5.86919536855812167292018230283, 6.26212120081805298917044608026, 6.92637201332727030742439503808, 7.86904897167746791036834346593

Graph of the $Z$-function along the critical line