Properties

Label 2-546-91.83-c1-0-5
Degree $2$
Conductor $546$
Sign $0.998 + 0.0464i$
Analytic cond. $4.35983$
Root an. cond. $2.08802$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 − 0.707i)2-s + i·3-s − 1.00i·4-s + (2.27 + 2.27i)5-s + (0.707 + 0.707i)6-s + (1.35 − 2.27i)7-s + (−0.707 − 0.707i)8-s − 9-s + 3.21·10-s + (0.355 + 0.355i)11-s + 1.00·12-s + (2 − 3i)13-s + (−0.648 − 2.56i)14-s + (−2.27 + 2.27i)15-s − 1.00·16-s − 4.32·17-s + ⋯
L(s)  = 1  + (0.499 − 0.499i)2-s + 0.577i·3-s − 0.500i·4-s + (1.01 + 1.01i)5-s + (0.288 + 0.288i)6-s + (0.512 − 0.858i)7-s + (−0.250 − 0.250i)8-s − 0.333·9-s + 1.01·10-s + (0.107 + 0.107i)11-s + 0.288·12-s + (0.554 − 0.832i)13-s + (−0.173 − 0.685i)14-s + (−0.586 + 0.586i)15-s − 0.250·16-s − 1.04·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0464i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 + 0.0464i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(546\)    =    \(2 \cdot 3 \cdot 7 \cdot 13\)
Sign: $0.998 + 0.0464i$
Analytic conductor: \(4.35983\)
Root analytic conductor: \(2.08802\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{546} (265, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 546,\ (\ :1/2),\ 0.998 + 0.0464i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.29937 - 0.0534150i\)
\(L(\frac12)\) \(\approx\) \(2.29937 - 0.0534150i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.707 + 0.707i)T \)
3 \( 1 - iT \)
7 \( 1 + (-1.35 + 2.27i)T \)
13 \( 1 + (-2 + 3i)T \)
good5 \( 1 + (-2.27 - 2.27i)T + 5iT^{2} \)
11 \( 1 + (-0.355 - 0.355i)T + 11iT^{2} \)
17 \( 1 + 4.32T + 17T^{2} \)
19 \( 1 + (-5.98 - 5.98i)T + 19iT^{2} \)
23 \( 1 - 2.38iT - 23T^{2} \)
29 \( 1 - 1.09T + 29T^{2} \)
31 \( 1 + (-1.08 - 1.08i)T + 31iT^{2} \)
37 \( 1 + (5.18 + 5.18i)T + 37iT^{2} \)
41 \( 1 + (-3.53 - 3.53i)T + 41iT^{2} \)
43 \( 1 + 7.44iT - 43T^{2} \)
47 \( 1 + (4.71 - 4.71i)T - 47iT^{2} \)
53 \( 1 + 11.2T + 53T^{2} \)
59 \( 1 + (-3.61 + 3.61i)T - 59iT^{2} \)
61 \( 1 + 4.32iT - 61T^{2} \)
67 \( 1 + (0.531 - 0.531i)T - 67iT^{2} \)
71 \( 1 + (-6.38 + 6.38i)T - 71iT^{2} \)
73 \( 1 + (5.18 - 5.18i)T - 73iT^{2} \)
79 \( 1 + 11.3T + 79T^{2} \)
83 \( 1 + (-6.71 - 6.71i)T + 83iT^{2} \)
89 \( 1 + (3.75 - 3.75i)T - 89iT^{2} \)
97 \( 1 + (12.9 + 12.9i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.81993643528599694042751456904, −10.09581937180183959571100001439, −9.516047850388438004285794214016, −8.129957720834939896101679772652, −6.99907663490012171664472168248, −5.99265245931941954936141743408, −5.17704717520398971058127931569, −3.90453265628068329394744023935, −3.03765288550293821321450656340, −1.63211104732944702899421863257, 1.51333430451822239798204384811, 2.70111664539984533557250764507, 4.57055922316804466584229718575, 5.25567228002331993850646667718, 6.16439988946319945767196746509, 6.94884258778532001883953473885, 8.281570206525311255112294232688, 8.914103562101792114204489854882, 9.503237867966395016935096178815, 11.17370505762946306502129393297

Graph of the $Z$-function along the critical line