Properties

Label 2-546-7.4-c1-0-6
Degree $2$
Conductor $546$
Sign $0.605 + 0.795i$
Analytic cond. $4.35983$
Root an. cond. $2.08802$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (−0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.5 + 0.866i)5-s + 0.999·6-s + (−0.5 − 2.59i)7-s + 0.999·8-s + (−0.499 − 0.866i)9-s + (0.499 − 0.866i)10-s + (0.5 − 0.866i)11-s + (−0.499 − 0.866i)12-s − 13-s + (−2 + 1.73i)14-s − 0.999·15-s + (−0.5 − 0.866i)16-s + (3 − 5.19i)17-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (−0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s + (0.223 + 0.387i)5-s + 0.408·6-s + (−0.188 − 0.981i)7-s + 0.353·8-s + (−0.166 − 0.288i)9-s + (0.158 − 0.273i)10-s + (0.150 − 0.261i)11-s + (−0.144 − 0.249i)12-s − 0.277·13-s + (−0.534 + 0.462i)14-s − 0.258·15-s + (−0.125 − 0.216i)16-s + (0.727 − 1.26i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(546\)    =    \(2 \cdot 3 \cdot 7 \cdot 13\)
Sign: $0.605 + 0.795i$
Analytic conductor: \(4.35983\)
Root analytic conductor: \(2.08802\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{546} (235, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 546,\ (\ :1/2),\ 0.605 + 0.795i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.962495 - 0.477135i\)
\(L(\frac12)\) \(\approx\) \(0.962495 - 0.477135i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 + 0.866i)T \)
3 \( 1 + (0.5 - 0.866i)T \)
7 \( 1 + (0.5 + 2.59i)T \)
13 \( 1 + T \)
good5 \( 1 + (-0.5 - 0.866i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (-0.5 + 0.866i)T + (-5.5 - 9.52i)T^{2} \)
17 \( 1 + (-3 + 5.19i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-2 - 3.46i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-3 - 5.19i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 - 3T + 29T^{2} \)
31 \( 1 + (-5.5 + 9.52i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (2 + 3.46i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 - 12T + 41T^{2} \)
43 \( 1 + 8T + 43T^{2} \)
47 \( 1 + (-4 - 6.92i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-2.5 + 4.33i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-2.5 + 4.33i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (6 + 10.3i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (8 - 13.8i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 - 6T + 71T^{2} \)
73 \( 1 + (-5 + 8.66i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (3.5 + 6.06i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + 17T + 83T^{2} \)
89 \( 1 + (-6 - 10.3i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 - 13T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.59968536796956491800518294361, −9.820929896446834318321933931817, −9.399962436611779990352195139564, −7.969137781154364086106483468282, −7.22440246136445821184965402644, −6.05502022869840190829460552562, −4.84520803212155032273063532775, −3.76773780067947046869286477055, −2.78934340961851449924498546850, −0.871446442840109719682469124242, 1.29709934570008451130050918403, 2.83931838297286137220896364174, 4.71654687659452427119489782948, 5.53074109270997193839021520966, 6.42425224506268994397092301196, 7.22346425429358204649414479361, 8.440177060108751622383883953505, 8.867364660409077181261747633233, 9.941274010020743059097259597581, 10.79292762452724638664465111222

Graph of the $Z$-function along the critical line