Properties

Label 2-546-273.62-c1-0-33
Degree $2$
Conductor $546$
Sign $0.303 + 0.952i$
Analytic cond. $4.35983$
Root an. cond. $2.08802$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)2-s + (0.5 − 1.65i)3-s + (−0.499 + 0.866i)4-s − 2.52i·5-s + (1.68 − 0.396i)6-s + (2.5 − 0.866i)7-s − 0.999·8-s + (−2.5 − 1.65i)9-s + (2.18 − 1.26i)10-s + (−0.686 − 1.18i)11-s + (1.18 + 1.26i)12-s + (−3.5 − 0.866i)13-s + (2 + 1.73i)14-s + (−4.18 − 1.26i)15-s + (−0.5 − 0.866i)16-s + (0.686 − 1.18i)17-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (0.288 − 0.957i)3-s + (−0.249 + 0.433i)4-s − 1.12i·5-s + (0.688 − 0.161i)6-s + (0.944 − 0.327i)7-s − 0.353·8-s + (−0.833 − 0.552i)9-s + (0.691 − 0.399i)10-s + (−0.206 − 0.358i)11-s + (0.342 + 0.364i)12-s + (−0.970 − 0.240i)13-s + (0.534 + 0.462i)14-s + (−1.08 − 0.325i)15-s + (−0.125 − 0.216i)16-s + (0.166 − 0.288i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.303 + 0.952i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.303 + 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(546\)    =    \(2 \cdot 3 \cdot 7 \cdot 13\)
Sign: $0.303 + 0.952i$
Analytic conductor: \(4.35983\)
Root analytic conductor: \(2.08802\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{546} (335, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 546,\ (\ :1/2),\ 0.303 + 0.952i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.43615 - 1.04927i\)
\(L(\frac12)\) \(\approx\) \(1.43615 - 1.04927i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.5 - 0.866i)T \)
3 \( 1 + (-0.5 + 1.65i)T \)
7 \( 1 + (-2.5 + 0.866i)T \)
13 \( 1 + (3.5 + 0.866i)T \)
good5 \( 1 + 2.52iT - 5T^{2} \)
11 \( 1 + (0.686 + 1.18i)T + (-5.5 + 9.52i)T^{2} \)
17 \( 1 + (-0.686 + 1.18i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (1.68 - 2.92i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-0.813 + 0.469i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 + (0.686 - 0.396i)T + (14.5 - 25.1i)T^{2} \)
31 \( 1 - 4.74T + 31T^{2} \)
37 \( 1 + (-7.11 + 4.10i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (-5.31 + 3.06i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (-2 + 3.46i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + 4.25iT - 47T^{2} \)
53 \( 1 - 14.3iT - 53T^{2} \)
59 \( 1 + (-8.18 - 4.72i)T + (29.5 + 51.0i)T^{2} \)
61 \( 1 + (4.5 + 2.59i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (7.11 - 4.10i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (-0.558 + 0.967i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + 0.744T + 73T^{2} \)
79 \( 1 - 15.3T + 79T^{2} \)
83 \( 1 - 5.04iT - 83T^{2} \)
89 \( 1 + (10.8 - 6.23i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (5.37 - 9.30i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.75268285054344048055316619136, −9.359594698741106290757202088017, −8.533403457698752377100344209441, −7.86756187437647567157192948627, −7.23858014979691113232516097351, −5.93211596386218387464096243682, −5.13422355388003718418515535276, −4.14440473950229645315131957142, −2.48440001536011676705609683528, −0.924672550695549422600391622727, 2.26604168097184222595489762139, 2.99901061047098029415195770649, 4.36322647056069704293813004972, 4.99625825382711572504056502436, 6.22348380644112740664318318623, 7.49238087550472603212765237587, 8.458962430871248143309774683806, 9.581608522079156736194618401278, 10.15208413396756938372673533442, 11.12911253832803916671018352254

Graph of the $Z$-function along the critical line