Properties

Label 2-546-273.62-c1-0-26
Degree $2$
Conductor $546$
Sign $0.831 + 0.555i$
Analytic cond. $4.35983$
Root an. cond. $2.08802$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)2-s + (−1.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s − 3.46i·5-s + (−1.5 − 0.866i)6-s + (0.5 + 2.59i)7-s − 0.999·8-s + (1.5 − 2.59i)9-s + (2.99 − 1.73i)10-s + (−1.5 − 2.59i)11-s − 1.73i·12-s + (−3.5 − 0.866i)13-s + (−2 + 1.73i)14-s + (2.99 + 5.19i)15-s + (−0.5 − 0.866i)16-s + (1.5 − 2.59i)17-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (−0.866 + 0.499i)3-s + (−0.249 + 0.433i)4-s − 1.54i·5-s + (−0.612 − 0.353i)6-s + (0.188 + 0.981i)7-s − 0.353·8-s + (0.5 − 0.866i)9-s + (0.948 − 0.547i)10-s + (−0.452 − 0.783i)11-s − 0.499i·12-s + (−0.970 − 0.240i)13-s + (−0.534 + 0.462i)14-s + (0.774 + 1.34i)15-s + (−0.125 − 0.216i)16-s + (0.363 − 0.630i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.831 + 0.555i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.831 + 0.555i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(546\)    =    \(2 \cdot 3 \cdot 7 \cdot 13\)
Sign: $0.831 + 0.555i$
Analytic conductor: \(4.35983\)
Root analytic conductor: \(2.08802\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{546} (335, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 546,\ (\ :1/2),\ 0.831 + 0.555i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.987414 - 0.299427i\)
\(L(\frac12)\) \(\approx\) \(0.987414 - 0.299427i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.5 - 0.866i)T \)
3 \( 1 + (1.5 - 0.866i)T \)
7 \( 1 + (-0.5 - 2.59i)T \)
13 \( 1 + (3.5 + 0.866i)T \)
good5 \( 1 + 3.46iT - 5T^{2} \)
11 \( 1 + (1.5 + 2.59i)T + (-5.5 + 9.52i)T^{2} \)
17 \( 1 + (-1.5 + 2.59i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-3.5 + 6.06i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-6 + 3.46i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 + (1.5 - 0.866i)T + (14.5 - 25.1i)T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 + (6 - 3.46i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (-4.5 + 2.59i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (-4 + 6.92i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 - 8.66iT - 47T^{2} \)
53 \( 1 + 8.66iT - 53T^{2} \)
59 \( 1 + (9 + 5.19i)T + (29.5 + 51.0i)T^{2} \)
61 \( 1 + (4.5 + 2.59i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (-3 + 5.19i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 - 4T + 73T^{2} \)
79 \( 1 + 11T + 79T^{2} \)
83 \( 1 - 13.8iT - 83T^{2} \)
89 \( 1 + (-7.5 + 4.33i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (1 - 1.73i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.89043586202233015666303417298, −9.448129594203932023987951652966, −9.084645422554149207647711879063, −8.122210821598077554277622519997, −6.94855126301734884961396599558, −5.69686243724189067431138911879, −5.04973931195115723305315913715, −4.74483735895783892611478179094, −2.98005448757688447831486652410, −0.61989339783572163750365976131, 1.58836594307095652753819332374, 2.92415895775985090378529506882, 4.15665203548347950283258225297, 5.28994329213882025068119788345, 6.33047353061101564276899378472, 7.38812972892025911663621270373, 7.57271894389110726842678646524, 9.739969867583760169079226917191, 10.34460179827228571772165423992, 10.82196633687109774518518307236

Graph of the $Z$-function along the critical line