Properties

Label 2-546-273.194-c1-0-5
Degree $2$
Conductor $546$
Sign $-0.126 - 0.991i$
Analytic cond. $4.35983$
Root an. cond. $2.08802$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)2-s + (−0.924 − 1.46i)3-s + (−0.499 − 0.866i)4-s + (3.23 + 1.86i)5-s + (1.73 − 0.0678i)6-s + (−0.481 + 2.60i)7-s + 0.999·8-s + (−1.29 + 2.70i)9-s + (−3.23 + 1.86i)10-s + (−0.664 − 1.15i)11-s + (−0.806 + 1.53i)12-s + (−0.452 + 3.57i)13-s + (−2.01 − 1.71i)14-s + (−0.253 − 6.46i)15-s + (−0.5 + 0.866i)16-s + (−2.49 − 4.31i)17-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.533 − 0.845i)3-s + (−0.249 − 0.433i)4-s + (1.44 + 0.835i)5-s + (0.706 − 0.0276i)6-s + (−0.182 + 0.983i)7-s + 0.353·8-s + (−0.430 + 0.902i)9-s + (−1.02 + 0.590i)10-s + (−0.200 − 0.346i)11-s + (−0.232 + 0.442i)12-s + (−0.125 + 0.992i)13-s + (−0.537 − 0.459i)14-s + (−0.0653 − 1.66i)15-s + (−0.125 + 0.216i)16-s + (−0.604 − 1.04i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.126 - 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.126 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(546\)    =    \(2 \cdot 3 \cdot 7 \cdot 13\)
Sign: $-0.126 - 0.991i$
Analytic conductor: \(4.35983\)
Root analytic conductor: \(2.08802\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{546} (467, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 546,\ (\ :1/2),\ -0.126 - 0.991i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.688280 + 0.781706i\)
\(L(\frac12)\) \(\approx\) \(0.688280 + 0.781706i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 - 0.866i)T \)
3 \( 1 + (0.924 + 1.46i)T \)
7 \( 1 + (0.481 - 2.60i)T \)
13 \( 1 + (0.452 - 3.57i)T \)
good5 \( 1 + (-3.23 - 1.86i)T + (2.5 + 4.33i)T^{2} \)
11 \( 1 + (0.664 + 1.15i)T + (-5.5 + 9.52i)T^{2} \)
17 \( 1 + (2.49 + 4.31i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (2.36 - 4.09i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-1.00 - 0.578i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 - 6.29iT - 29T^{2} \)
31 \( 1 + (1.66 + 2.88i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (-7.87 - 4.54i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 - 4.38iT - 41T^{2} \)
43 \( 1 + 9.54T + 43T^{2} \)
47 \( 1 + (-6.95 - 4.01i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (-1.36 + 0.788i)T + (26.5 - 45.8i)T^{2} \)
59 \( 1 + (-9.31 + 5.37i)T + (29.5 - 51.0i)T^{2} \)
61 \( 1 + (-4.85 - 2.80i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (-3.51 + 2.03i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + 9.95T + 71T^{2} \)
73 \( 1 + (-7.21 - 12.4i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-7.22 + 12.5i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + 6.74iT - 83T^{2} \)
89 \( 1 + (2.55 + 1.47i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 - 9.79T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.03973357515787336510876323972, −10.01287270125664149994764512436, −9.272589199235187872507446779389, −8.369979378683661745868813613721, −7.10241765772713756956354040087, −6.46835484577920970807412943412, −5.86479362321895983108010034867, −5.02366995543341561712212611430, −2.69376298519490243258004562010, −1.77915224191688120466242778704, 0.72108515238159281859714559882, 2.33879763770323297888954224704, 3.91689956546724274205693472255, 4.82760668890284477584330245716, 5.74092619755796727861731382786, 6.77180067103643663095176433833, 8.275563287852090971131649723087, 9.145478995545631001512439091098, 9.882586249868056172733691170746, 10.43775142376070238952995234518

Graph of the $Z$-function along the critical line