Properties

Label 2-546-273.194-c1-0-0
Degree $2$
Conductor $546$
Sign $-0.891 + 0.453i$
Analytic cond. $4.35983$
Root an. cond. $2.08802$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)2-s + (−1.63 + 0.568i)3-s + (−0.499 − 0.866i)4-s + (−1.08 − 0.627i)5-s + (0.326 − 1.70i)6-s + (1.14 + 2.38i)7-s + 0.999·8-s + (2.35 − 1.85i)9-s + (1.08 − 0.627i)10-s + (0.900 + 1.56i)11-s + (1.31 + 1.13i)12-s + (−0.657 + 3.54i)13-s + (−2.63 − 0.204i)14-s + (2.13 + 0.409i)15-s + (−0.5 + 0.866i)16-s + (−1.12 − 1.95i)17-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.944 + 0.328i)3-s + (−0.249 − 0.433i)4-s + (−0.486 − 0.280i)5-s + (0.133 − 0.694i)6-s + (0.431 + 0.902i)7-s + 0.353·8-s + (0.784 − 0.619i)9-s + (0.343 − 0.198i)10-s + (0.271 + 0.470i)11-s + (0.378 + 0.327i)12-s + (−0.182 + 0.983i)13-s + (−0.704 − 0.0545i)14-s + (0.551 + 0.105i)15-s + (−0.125 + 0.216i)16-s + (−0.273 − 0.473i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.891 + 0.453i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.891 + 0.453i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(546\)    =    \(2 \cdot 3 \cdot 7 \cdot 13\)
Sign: $-0.891 + 0.453i$
Analytic conductor: \(4.35983\)
Root analytic conductor: \(2.08802\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{546} (467, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 546,\ (\ :1/2),\ -0.891 + 0.453i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0628737 - 0.262389i\)
\(L(\frac12)\) \(\approx\) \(0.0628737 - 0.262389i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 - 0.866i)T \)
3 \( 1 + (1.63 - 0.568i)T \)
7 \( 1 + (-1.14 - 2.38i)T \)
13 \( 1 + (0.657 - 3.54i)T \)
good5 \( 1 + (1.08 + 0.627i)T + (2.5 + 4.33i)T^{2} \)
11 \( 1 + (-0.900 - 1.56i)T + (-5.5 + 9.52i)T^{2} \)
17 \( 1 + (1.12 + 1.95i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (2.46 - 4.26i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (7.93 + 4.58i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 + 6.62iT - 29T^{2} \)
31 \( 1 + (-2.39 - 4.14i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (4.77 + 2.75i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 - 9.52iT - 41T^{2} \)
43 \( 1 - 3.14T + 43T^{2} \)
47 \( 1 + (8.20 + 4.73i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (11.2 - 6.52i)T + (26.5 - 45.8i)T^{2} \)
59 \( 1 + (-4.80 + 2.77i)T + (29.5 - 51.0i)T^{2} \)
61 \( 1 + (-2.64 - 1.52i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (11.4 - 6.60i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 - 9.21T + 71T^{2} \)
73 \( 1 + (7.95 + 13.7i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (0.323 - 0.560i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 - 11.3iT - 83T^{2} \)
89 \( 1 + (11.1 + 6.42i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + 1.48T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.46232457803475385089515570886, −10.25152161946672642128858710826, −9.591432208634860124932685710585, −8.586311375962208248009563651973, −7.80721349910927738184221438576, −6.54281477113446752740307008573, −6.00108979549934821776442789903, −4.74141188189294047981397616172, −4.20769339429536157576091937875, −1.89198423939866267406440532191, 0.19827668385580442135362548573, 1.68085951306576994984040173974, 3.46831476121174647840295532281, 4.45091758476508538652580852321, 5.61149018077632703871885795751, 6.81531884185499471838801331370, 7.63299839534861536520101634943, 8.352377849010955181798651247602, 9.762708400723717841870643345125, 10.58014142162033565311632076546

Graph of the $Z$-function along the critical line