L(s) = 1 | + (−0.866 − 0.5i)2-s + (−1.51 − 0.835i)3-s + (0.499 + 0.866i)4-s + (−0.699 − 1.21i)5-s + (0.895 + 1.48i)6-s + (1.97 + 1.75i)7-s − 0.999i·8-s + (1.60 + 2.53i)9-s + 1.39i·10-s − 1.26i·11-s + (−0.0345 − 1.73i)12-s + (−3.58 − 0.379i)13-s + (−0.831 − 2.51i)14-s + (0.0483 + 2.42i)15-s + (−0.5 + 0.866i)16-s + (3.43 + 5.94i)17-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (−0.875 − 0.482i)3-s + (0.249 + 0.433i)4-s + (−0.312 − 0.541i)5-s + (0.365 + 0.605i)6-s + (0.746 + 0.664i)7-s − 0.353i·8-s + (0.534 + 0.845i)9-s + 0.442i·10-s − 0.381i·11-s + (−0.00998 − 0.499i)12-s + (−0.994 − 0.105i)13-s + (−0.222 − 0.671i)14-s + (0.0124 + 0.625i)15-s + (−0.125 + 0.216i)16-s + (0.832 + 1.44i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.913 + 0.405i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.913 + 0.405i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.778708 - 0.165092i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.778708 - 0.165092i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 + (1.51 + 0.835i)T \) |
| 7 | \( 1 + (-1.97 - 1.75i)T \) |
| 13 | \( 1 + (3.58 + 0.379i)T \) |
good | 5 | \( 1 + (0.699 + 1.21i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + 1.26iT - 11T^{2} \) |
| 17 | \( 1 + (-3.43 - 5.94i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 - 4.61iT - 19T^{2} \) |
| 23 | \( 1 + (-2.17 - 1.25i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.55 + 2.62i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.41 - 2.54i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.45 + 5.98i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (3.22 + 5.58i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.08 + 10.5i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.58 - 2.74i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.444 - 0.256i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-7.18 - 12.4i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 - 3.07iT - 61T^{2} \) |
| 67 | \( 1 + 0.624T + 67T^{2} \) |
| 71 | \( 1 + (-3.78 - 2.18i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (7.24 + 4.18i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.13 - 12.3i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 3.52T + 83T^{2} \) |
| 89 | \( 1 + (-7.94 + 13.7i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (2.18 + 1.26i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.65347806182433349349652842854, −10.17030532118159234989117017068, −8.797078518131204716718506007898, −8.114451583636029858720021791786, −7.40055109697540875701541988705, −6.06646933313862669049057580509, −5.28553817549843318702204845017, −4.11843089066550491332415922629, −2.31186840781056223455717270338, −1.04040023688907349087146368464,
0.858005646243887381194921201606, 2.92540349958309241837141656148, 4.66147116252141848309112633235, 5.05369027273555247713435996602, 6.62357055645692304335439272279, 7.15539877761195989824911271000, 7.985349216547658831381032495200, 9.414573361412512271869506644507, 9.930003718724476874701956217273, 10.87217289419509749828332849261