Properties

Label 2-546-273.17-c1-0-28
Degree $2$
Conductor $546$
Sign $-0.950 + 0.309i$
Analytic cond. $4.35983$
Root an. cond. $2.08802$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + (−1.36 − 1.06i)3-s + 4-s + (2.60 − 1.50i)5-s + (1.36 + 1.06i)6-s + (−2.60 − 0.446i)7-s − 8-s + (0.718 + 2.91i)9-s + (−2.60 + 1.50i)10-s + (−2.01 − 3.49i)11-s + (−1.36 − 1.06i)12-s + (0.138 − 3.60i)13-s + (2.60 + 0.446i)14-s + (−5.15 − 0.730i)15-s + 16-s + 3.34·17-s + ⋯
L(s)  = 1  − 0.707·2-s + (−0.787 − 0.616i)3-s + 0.5·4-s + (1.16 − 0.672i)5-s + (0.556 + 0.436i)6-s + (−0.985 − 0.168i)7-s − 0.353·8-s + (0.239 + 0.970i)9-s + (−0.823 + 0.475i)10-s + (−0.607 − 1.05i)11-s + (−0.393 − 0.308i)12-s + (0.0382 − 0.999i)13-s + (0.696 + 0.119i)14-s + (−1.33 − 0.188i)15-s + 0.250·16-s + 0.810·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.950 + 0.309i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.950 + 0.309i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(546\)    =    \(2 \cdot 3 \cdot 7 \cdot 13\)
Sign: $-0.950 + 0.309i$
Analytic conductor: \(4.35983\)
Root analytic conductor: \(2.08802\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{546} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 546,\ (\ :1/2),\ -0.950 + 0.309i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0836516 - 0.527797i\)
\(L(\frac12)\) \(\approx\) \(0.0836516 - 0.527797i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + (1.36 + 1.06i)T \)
7 \( 1 + (2.60 + 0.446i)T \)
13 \( 1 + (-0.138 + 3.60i)T \)
good5 \( 1 + (-2.60 + 1.50i)T + (2.5 - 4.33i)T^{2} \)
11 \( 1 + (2.01 + 3.49i)T + (-5.5 + 9.52i)T^{2} \)
17 \( 1 - 3.34T + 17T^{2} \)
19 \( 1 + (2.56 - 4.44i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + 2.48iT - 23T^{2} \)
29 \( 1 + (3.74 + 2.16i)T + (14.5 + 25.1i)T^{2} \)
31 \( 1 + (2.95 - 5.12i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + 2.57iT - 37T^{2} \)
41 \( 1 + (6.29 + 3.63i)T + (20.5 + 35.5i)T^{2} \)
43 \( 1 + (2.23 + 3.87i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (5.77 - 3.33i)T + (23.5 - 40.7i)T^{2} \)
53 \( 1 + (8.50 + 4.90i)T + (26.5 + 45.8i)T^{2} \)
59 \( 1 + 3.18iT - 59T^{2} \)
61 \( 1 + (5.77 + 3.33i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (-7.04 + 4.07i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (0.436 + 0.756i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (6.78 - 11.7i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-8.50 - 14.7i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + 12.6iT - 83T^{2} \)
89 \( 1 + 3.63iT - 89T^{2} \)
97 \( 1 + (-1.10 - 1.91i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.31579911223831364775302579211, −9.742981565797192711664955172721, −8.572471003884780904361041088709, −7.82983748641943281456159888170, −6.61599491558190457685435177308, −5.81751285065096851596472708569, −5.34937329876515984237134013493, −3.24819542847674202828093459125, −1.77842534595599899403215328522, −0.40670245530500768377774995086, 1.96369701563219955078555502350, 3.25014157664076462233259825967, 4.81016800694075466036124514441, 5.94521061106871014893203715057, 6.57513394290048172090160284434, 7.35260360827283126343621118684, 9.064561380293154662193551026266, 9.687177484382724144102595727159, 10.07035396166379175640962221112, 10.91570730492295834407324378724

Graph of the $Z$-function along the critical line